Design of MRI structured spiking neural networks and learning algorithms for personalized modelling, analysis, and prediction of EEG signals

Abstract This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a better analysis, modeling, and prediction of EEG signals. It proposes a novel gradient-descent learning algorithm integrated with a spike-time-dep...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Samaneh Alsadat Saeedinia, Mohammad Reza Jahed-Motlagh, Abbas Tafakhori, Nikola Kasabov
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/a2f0ca33db2a424b9a3bc28f530616c9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a2f0ca33db2a424b9a3bc28f530616c9
record_format dspace
spelling oai:doaj.org-article:a2f0ca33db2a424b9a3bc28f530616c92021-12-02T17:52:12ZDesign of MRI structured spiking neural networks and learning algorithms for personalized modelling, analysis, and prediction of EEG signals10.1038/s41598-021-90029-52045-2322https://doaj.org/article/a2f0ca33db2a424b9a3bc28f530616c92021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-90029-5https://doaj.org/toc/2045-2322Abstract This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a better analysis, modeling, and prediction of EEG signals. It proposes a novel gradient-descent learning algorithm integrated with a spike-time-dependent-plasticity algorithm. The models capture informative personal patterns of interaction between EEG channels, contrary to single EEG signal modeling methods or to spike-based approaches which do not use personal MRI data to pre-structure a model. The proposed models can not only learn and model accurately measured EEG data, but they can also predict signals at 3D model locations that correspond to non-monitored brain areas, e.g. other EEG channels, from where data has not been collected. This is the first study in this respect. As an illustration of the method, personalized MRI-SNN models are created and tested on EEG data from two subjects. The models result in better prediction accuracy and a better understanding of the personalized EEG signals than traditional methods due to the MRI and EEG information integration. The models are interpretable and facilitate a better understanding of related brain processes. This approach can be applied for personalized modeling, analysis, and prediction of EEG signals across brain studies such as the study and prediction of epilepsy, peri-perceptual brain activities, brain-computer interfaces, and others.Samaneh Alsadat SaeediniaMohammad Reza Jahed-MotlaghAbbas TafakhoriNikola KasabovNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Samaneh Alsadat Saeedinia
Mohammad Reza Jahed-Motlagh
Abbas Tafakhori
Nikola Kasabov
Design of MRI structured spiking neural networks and learning algorithms for personalized modelling, analysis, and prediction of EEG signals
description Abstract This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a better analysis, modeling, and prediction of EEG signals. It proposes a novel gradient-descent learning algorithm integrated with a spike-time-dependent-plasticity algorithm. The models capture informative personal patterns of interaction between EEG channels, contrary to single EEG signal modeling methods or to spike-based approaches which do not use personal MRI data to pre-structure a model. The proposed models can not only learn and model accurately measured EEG data, but they can also predict signals at 3D model locations that correspond to non-monitored brain areas, e.g. other EEG channels, from where data has not been collected. This is the first study in this respect. As an illustration of the method, personalized MRI-SNN models are created and tested on EEG data from two subjects. The models result in better prediction accuracy and a better understanding of the personalized EEG signals than traditional methods due to the MRI and EEG information integration. The models are interpretable and facilitate a better understanding of related brain processes. This approach can be applied for personalized modeling, analysis, and prediction of EEG signals across brain studies such as the study and prediction of epilepsy, peri-perceptual brain activities, brain-computer interfaces, and others.
format article
author Samaneh Alsadat Saeedinia
Mohammad Reza Jahed-Motlagh
Abbas Tafakhori
Nikola Kasabov
author_facet Samaneh Alsadat Saeedinia
Mohammad Reza Jahed-Motlagh
Abbas Tafakhori
Nikola Kasabov
author_sort Samaneh Alsadat Saeedinia
title Design of MRI structured spiking neural networks and learning algorithms for personalized modelling, analysis, and prediction of EEG signals
title_short Design of MRI structured spiking neural networks and learning algorithms for personalized modelling, analysis, and prediction of EEG signals
title_full Design of MRI structured spiking neural networks and learning algorithms for personalized modelling, analysis, and prediction of EEG signals
title_fullStr Design of MRI structured spiking neural networks and learning algorithms for personalized modelling, analysis, and prediction of EEG signals
title_full_unstemmed Design of MRI structured spiking neural networks and learning algorithms for personalized modelling, analysis, and prediction of EEG signals
title_sort design of mri structured spiking neural networks and learning algorithms for personalized modelling, analysis, and prediction of eeg signals
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/a2f0ca33db2a424b9a3bc28f530616c9
work_keys_str_mv AT samanehalsadatsaeedinia designofmristructuredspikingneuralnetworksandlearningalgorithmsforpersonalizedmodellinganalysisandpredictionofeegsignals
AT mohammadrezajahedmotlagh designofmristructuredspikingneuralnetworksandlearningalgorithmsforpersonalizedmodellinganalysisandpredictionofeegsignals
AT abbastafakhori designofmristructuredspikingneuralnetworksandlearningalgorithmsforpersonalizedmodellinganalysisandpredictionofeegsignals
AT nikolakasabov designofmristructuredspikingneuralnetworksandlearningalgorithmsforpersonalizedmodellinganalysisandpredictionofeegsignals
_version_ 1718379244557434880