Design of MRI structured spiking neural networks and learning algorithms for personalized modelling, analysis, and prediction of EEG signals
Abstract This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a better analysis, modeling, and prediction of EEG signals. It proposes a novel gradient-descent learning algorithm integrated with a spike-time-dep...
Enregistré dans:
Auteurs principaux: | Samaneh Alsadat Saeedinia, Mohammad Reza Jahed-Motlagh, Abbas Tafakhori, Nikola Kasabov |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a2f0ca33db2a424b9a3bc28f530616c9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Brain-inspired spiking neural networks for decoding and understanding muscle activity and kinematics from electroencephalography signals during hand movements
par: Kaushalya Kumarasinghe, et autres
Publié: (2021) -
A personalized and evolutionary algorithm for interpretable EEG epilepsy seizure prediction
par: Mauro. F. Pinto, et autres
Publié: (2021) -
Combining EEG and MRI data to personalize neurostimulation for focal epilepsy; an open-source software implementation
par: Steven Beumer, et autres
Publié: (2021) -
An Effective Algorithm for Specular Reflection Image Enhancement
par: Zhuang Huang, et autres
Publié: (2021) -
An automatic spike sorting algorithm based on adaptive spike detection and a mixture of skew-t distributions
par: Ramin Toosi, et autres
Publié: (2021)