Deep neural networks using a single neuron: folded-in-time architecture using feedback-modulated delay loops

Development of deep neural networks benefits from new approaches and perspectives. Stelzer et al. propose to fold a deep neural network of arbitrary size into a single neuron with multiple time-delayed feedback loops which is also of relevance for new hardware implementations and applications.

Guardado en:
Detalles Bibliográficos
Autores principales: Florian Stelzer, André Röhm, Raul Vicente, Ingo Fischer, Serhiy Yanchuk
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/a30698a825bc4477addc0a41c91fd055
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a30698a825bc4477addc0a41c91fd055
record_format dspace
spelling oai:doaj.org-article:a30698a825bc4477addc0a41c91fd0552021-12-02T15:09:09ZDeep neural networks using a single neuron: folded-in-time architecture using feedback-modulated delay loops10.1038/s41467-021-25427-42041-1723https://doaj.org/article/a30698a825bc4477addc0a41c91fd0552021-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25427-4https://doaj.org/toc/2041-1723Development of deep neural networks benefits from new approaches and perspectives. Stelzer et al. propose to fold a deep neural network of arbitrary size into a single neuron with multiple time-delayed feedback loops which is also of relevance for new hardware implementations and applications.Florian StelzerAndré RöhmRaul VicenteIngo FischerSerhiy YanchukNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Florian Stelzer
André Röhm
Raul Vicente
Ingo Fischer
Serhiy Yanchuk
Deep neural networks using a single neuron: folded-in-time architecture using feedback-modulated delay loops
description Development of deep neural networks benefits from new approaches and perspectives. Stelzer et al. propose to fold a deep neural network of arbitrary size into a single neuron with multiple time-delayed feedback loops which is also of relevance for new hardware implementations and applications.
format article
author Florian Stelzer
André Röhm
Raul Vicente
Ingo Fischer
Serhiy Yanchuk
author_facet Florian Stelzer
André Röhm
Raul Vicente
Ingo Fischer
Serhiy Yanchuk
author_sort Florian Stelzer
title Deep neural networks using a single neuron: folded-in-time architecture using feedback-modulated delay loops
title_short Deep neural networks using a single neuron: folded-in-time architecture using feedback-modulated delay loops
title_full Deep neural networks using a single neuron: folded-in-time architecture using feedback-modulated delay loops
title_fullStr Deep neural networks using a single neuron: folded-in-time architecture using feedback-modulated delay loops
title_full_unstemmed Deep neural networks using a single neuron: folded-in-time architecture using feedback-modulated delay loops
title_sort deep neural networks using a single neuron: folded-in-time architecture using feedback-modulated delay loops
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/a30698a825bc4477addc0a41c91fd055
work_keys_str_mv AT florianstelzer deepneuralnetworksusingasingleneuronfoldedintimearchitectureusingfeedbackmodulateddelayloops
AT andrerohm deepneuralnetworksusingasingleneuronfoldedintimearchitectureusingfeedbackmodulateddelayloops
AT raulvicente deepneuralnetworksusingasingleneuronfoldedintimearchitectureusingfeedbackmodulateddelayloops
AT ingofischer deepneuralnetworksusingasingleneuronfoldedintimearchitectureusingfeedbackmodulateddelayloops
AT serhiyyanchuk deepneuralnetworksusingasingleneuronfoldedintimearchitectureusingfeedbackmodulateddelayloops
_version_ 1718387892845281280