Deep neural networks using a single neuron: folded-in-time architecture using feedback-modulated delay loops
Development of deep neural networks benefits from new approaches and perspectives. Stelzer et al. propose to fold a deep neural network of arbitrary size into a single neuron with multiple time-delayed feedback loops which is also of relevance for new hardware implementations and applications.
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a30698a825bc4477addc0a41c91fd055 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a30698a825bc4477addc0a41c91fd055 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a30698a825bc4477addc0a41c91fd0552021-12-02T15:09:09ZDeep neural networks using a single neuron: folded-in-time architecture using feedback-modulated delay loops10.1038/s41467-021-25427-42041-1723https://doaj.org/article/a30698a825bc4477addc0a41c91fd0552021-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25427-4https://doaj.org/toc/2041-1723Development of deep neural networks benefits from new approaches and perspectives. Stelzer et al. propose to fold a deep neural network of arbitrary size into a single neuron with multiple time-delayed feedback loops which is also of relevance for new hardware implementations and applications.Florian StelzerAndré RöhmRaul VicenteIngo FischerSerhiy YanchukNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Florian Stelzer André Röhm Raul Vicente Ingo Fischer Serhiy Yanchuk Deep neural networks using a single neuron: folded-in-time architecture using feedback-modulated delay loops |
description |
Development of deep neural networks benefits from new approaches and perspectives. Stelzer et al. propose to fold a deep neural network of arbitrary size into a single neuron with multiple time-delayed feedback loops which is also of relevance for new hardware implementations and applications. |
format |
article |
author |
Florian Stelzer André Röhm Raul Vicente Ingo Fischer Serhiy Yanchuk |
author_facet |
Florian Stelzer André Röhm Raul Vicente Ingo Fischer Serhiy Yanchuk |
author_sort |
Florian Stelzer |
title |
Deep neural networks using a single neuron: folded-in-time architecture using feedback-modulated delay loops |
title_short |
Deep neural networks using a single neuron: folded-in-time architecture using feedback-modulated delay loops |
title_full |
Deep neural networks using a single neuron: folded-in-time architecture using feedback-modulated delay loops |
title_fullStr |
Deep neural networks using a single neuron: folded-in-time architecture using feedback-modulated delay loops |
title_full_unstemmed |
Deep neural networks using a single neuron: folded-in-time architecture using feedback-modulated delay loops |
title_sort |
deep neural networks using a single neuron: folded-in-time architecture using feedback-modulated delay loops |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/a30698a825bc4477addc0a41c91fd055 |
work_keys_str_mv |
AT florianstelzer deepneuralnetworksusingasingleneuronfoldedintimearchitectureusingfeedbackmodulateddelayloops AT andrerohm deepneuralnetworksusingasingleneuronfoldedintimearchitectureusingfeedbackmodulateddelayloops AT raulvicente deepneuralnetworksusingasingleneuronfoldedintimearchitectureusingfeedbackmodulateddelayloops AT ingofischer deepneuralnetworksusingasingleneuronfoldedintimearchitectureusingfeedbackmodulateddelayloops AT serhiyyanchuk deepneuralnetworksusingasingleneuronfoldedintimearchitectureusingfeedbackmodulateddelayloops |
_version_ |
1718387892845281280 |