Deep neural networks using a single neuron: folded-in-time architecture using feedback-modulated delay loops
Development of deep neural networks benefits from new approaches and perspectives. Stelzer et al. propose to fold a deep neural network of arbitrary size into a single neuron with multiple time-delayed feedback loops which is also of relevance for new hardware implementations and applications.
Guardado en:
Autores principales: | Florian Stelzer, André Röhm, Raul Vicente, Ingo Fischer, Serhiy Yanchuk |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a30698a825bc4477addc0a41c91fd055 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Closed-loop deep brain stimulation by pulsatile delayed feedback with increased gap between pulse phases
por: Oleksandr V. Popovych, et al.
Publicado: (2017) -
Lag synchronization of coupled time-delayed FitzHugh–Nagumo neural networks via feedback control
por: Malik Muhammad Ibrahim, et al.
Publicado: (2021) -
A neural network-based model predictive controller for displacement tracking of piezoelectric actuator with feedback delays
por: Zhangming Du, et al.
Publicado: (2021) -
Rule-based cell systems model of aging using feedback loop motifs mediated by stress responses.
por: Andres Kriete, et al.
Publicado: (2010) -
An autoregulatory negative feedback loop controls thermomorphogenesis in Arabidopsis.
por: Sanghwa Lee, et al.
Publicado: (2021)