A machine learning framework for damage mechanism identification from acoustic emissions in unidirectional SiC/SiC composites
Abstract In this work, we demonstrate that damage mechanism identification from acoustic emission (AE) signals generated in minicomposites with elastically similar constituents is possible. AE waveforms were generated by SiC/SiC ceramic matrix minicomposites (CMCs) loaded under uniaxial tension and...
Guardado en:
Autores principales: | C. Muir, B. Swaminathan, K. Fields, A. S. Almansour, K. Sevener, C. Smith, M. Presby, J. D. Kiser, T. M. Pollock, S. Daly |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a32a34e63afa41ae95684f6380fb93fe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Damage mechanism identification in composites via machine learning and acoustic emission
por: C. Muir, et al.
Publicado: (2021) -
Mechanical properties of Fe-rich Si alloy from Hamiltonian
por: Tetsuo Mohri, et al.
Publicado: (2017) -
Machine learning and evolutionary prediction of superhard B-C-N compounds
por: Wei-Chih Chen, et al.
Publicado: (2021) -
Neural network reactive force field for C, H, N, and O systems
por: Pilsun Yoo, et al.
Publicado: (2021) -
CT Imaging in the Diagnosis of Lung Injury of Organophosphorus Poisoning and Analysis of Its Correlation with Procalcitonin and C-Reactive Protein Levels
por: Wenwen Sun, et al.
Publicado: (2021)