A machine learning framework for damage mechanism identification from acoustic emissions in unidirectional SiC/SiC composites

Abstract In this work, we demonstrate that damage mechanism identification from acoustic emission (AE) signals generated in minicomposites with elastically similar constituents is possible. AE waveforms were generated by SiC/SiC ceramic matrix minicomposites (CMCs) loaded under uniaxial tension and...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: C. Muir, B. Swaminathan, K. Fields, A. S. Almansour, K. Sevener, C. Smith, M. Presby, J. D. Kiser, T. M. Pollock, S. Daly
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/a32a34e63afa41ae95684f6380fb93fe
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares