Improving stock trading decisions based on pattern recognition using machine learning technology.
PRML, a novel candlestick pattern recognition model using machine learning methods, is proposed to improve stock trading decisions. Four popular machine learning methods and 11 different features types are applied to all possible combinations of daily patterns to start the pattern recognition schedu...
Guardado en:
Autores principales: | Yaohu Lin, Shancun Liu, Haijun Yang, Harris Wu, Bingbing Jiang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a32e0deb05ed4cf2921442240455341a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning for pattern and waveform recognitions in terahertz image data
por: Dmitry S. Bulgarevich, et al.
Publicado: (2021) -
Determination of the Dzyaloshinskii-Moriya interaction using pattern recognition and machine learning
por: Masashi Kawaguchi, et al.
Publicado: (2021) -
Enhancing the pattern recognition capacity of machine learning techniques: The importance of feature positioning
por: Debora Di Caprio, et al.
Publicado: (2022) -
Blue collar laborers’ travel pattern recognition: Machine learning classifier approach
por: Aya Hasan Alkhereibi, et al.
Publicado: (2021) -
Recognition of Psychological Characteristics of Students’ Behavior Based on Improved Machine Learning
por: Mingchao Li
Publicado: (2021)