DeepCarc: Deep Learning-Powered Carcinogenicity Prediction Using Model-Level Representation
Carcinogenicity testing plays an essential role in identifying carcinogens in environmental chemistry and drug development. However, it is a time-consuming and label-intensive process to evaluate the carcinogenic potency with conventional 2-years rodent animal studies. Thus, there is an urgent need...
Guardado en:
Autores principales: | Ting Li, Weida Tong, Ruth Roberts, Zhichao Liu, Shraddha Thakkar |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a33432a4df954daaa489eac9d7c120ba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Research Progress of Deep Learning in Retinal Vessel Segmentation
por: LI Lanlan1, ZHANG Xiaohui1, NIU Decao3, HU Yihuang1, ZHAO Tiesong1, WANG Dabiao2+
Publicado: (2021) -
Employee Attrition Prediction Using Deep Neural Networks
por: Salah Al-Darraji, et al.
Publicado: (2021) -
ResMem-Net: memory based deep CNN for image memorability estimation
por: Arockia Praveen, et al.
Publicado: (2021) -
Review on FPGA-Based Accelerators in Deep Learning
por: LIU Tengda1, ZHU Junwen1, ZHANG Yiwen2+
Publicado: (2021) -
Robust feature space separation for deep convolutional neural network training
por: Ali Sekmen, et al.
Publicado: (2021)