Machine learning-based mortality prediction model for heat-related illness
Abstract In this study, we aimed to develop and validate a machine learning-based mortality prediction model for hospitalized heat-related illness patients. After 2393 hospitalized patients were extracted from a multicentered heat-related illness registry in Japan, subjects were divided into the tra...
Guardado en:
Autores principales: | Yohei Hirano, Yutaka Kondo, Toru Hifumi, Shoji Yokobori, Jun Kanda, Junya Shimazaki, Kei Hayashida, Takashi Moriya, Masaharu Yagi, Shuhei Takauji, Junko Yamaguchi, Yohei Okada, Yuichi Okano, Hitoshi Kaneko, Tatsuho Kobayashi, Motoki Fujita, Hiroyuki Yokota, Ken Okamoto, Hiroshi Tanaka, Arino Yaguchi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a339b3e4021e4bf29780ed3e55dd3c72 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Association between active cooling and lower mortality among patients with heat stroke and heat exhaustion.
por: Jun Kanda, et al.
Publicado: (2021) -
Association between active cooling and lower mortality among patients with heat stroke and heat exhaustion
por: Jun Kanda, et al.
Publicado: (2021) -
Intensive care with extracorporeal membrane oxygenation rewarming in accident severe hypothermia (ICE-CRASH) study: a protocol for a multicentre prospective, observational study in Japan
por: Mineji Hayakawa, et al.
Publicado: (2021) -
Machine Learning Approach to Predict Positive Screening of Methicillin-Resistant Staphylococcus aureus During Mechanical Ventilation Using Synthetic Dataset From MIMIC-IV Database
por: Yohei Hirano, et al.
Publicado: (2021) -
Clinical Features of Early Stage COVID-19 in a Primary Care Setting
por: Yohei Kawatani, et al.
Publicado: (2021)