An AVMD Method Based on Energy Ratio and Deep Belief Network for Fault Identification of Automation Transmission Device
Considering that the vibration signals of gears and bearings in the automatic transmission device are complex and the fault features are difficult to extract. This paper proposes a method for extracting fault features of transmission device using adaptive variational modal decomposition (AVMD), and...
Enregistré dans:
Auteurs principaux: | Feng Ding, Yuan Xia, Jianhui Tian, Xinrui Zhang, Guangchu Hu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a349bf0c6f33449b8f77d2d17fdf7217 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Compressed Sensing and Stacked Multi-Granularity Convolution Denoising Auto-Encoder
par: Chuang Liang, et autres
Publié: (2021) -
Optimal state selection and tuning parameters for a degradation model in bearings using Mel-Frequency Cepstral Coefficients and Hidden Markov Chains
par: Holguín,Mauricio, et autres
Publié: (2016) -
Fault Detection and Identification Based on Explicit Polynomial Mapping and Combined Statistic in Nonlinear Dynamic Processes
par: Liangliang Shang, et autres
Publié: (2021) -
Daily Load Forecasting Based on a Combination of Classification and Regression Tree and Deep Belief Network
par: Pyae Pyae Phyo, et autres
Publié: (2021) -
Statistical Feature Extraction Combined with Generalized Discriminant Component Analysis Driven SVM for Fault Diagnosis of HVDC GIS
par: Ruixu Zhou, et autres
Publié: (2021)