Conceptual Understanding through Efficient Automated Design of Quantum Optical Experiments
Artificial intelligence (AI) is a potentially disruptive tool for physics and science in general. One crucial question is how this technology can contribute at a conceptual level to help acquire new scientific understanding. Scientists have used AI techniques to rediscover previously known concepts....
Guardado en:
Autores principales: | Mario Krenn, Jakob S. Kottmann, Nora Tischler, Alán Aspuru-Guzik |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a34eeb74fc0845a697308b7fa2729cdc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Designing and understanding light-harvesting devices with machine learning
por: Florian Häse, et al.
Publicado: (2020) -
Automated design of superconducting circuits and its application to 4-local couplers
por: Tim Menke, et al.
Publicado: (2021) -
An artificial spiking quantum neuron
por: Lasse Bjørn Kristensen, et al.
Publicado: (2021) -
Comparison of labatorials and traditional labs: The impacts of instructional scaffolding on the student experience and conceptual understanding
por: Franco La Braca, et al.
Publicado: (2021) -
Using experience-based design to understand the patient and caregiver experience with delirium
por: Lauren Russ, et al.
Publicado: (2019)