Phonon Conduction in Silicon Nanobeam Labyrinths

Abstract Here we study single-crystalline silicon nanobeams having 470 nm width and 80 nm thickness cross section, where we produce tortuous thermal paths (i.e. labyrinths) by introducing slits to control the impact of the unobstructed “line-of-sight” (LOS) between the heat source and heat sink. The...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Woosung Park, Giuseppe Romano, Ethan C. Ahn, Takashi Kodama, Joonsuk Park, Michael T. Barako, Joon Sohn, Soo Jin Kim, Jungwan Cho, Amy M. Marconnet, Mehdi Asheghi, Alexie M. Kolpak, Kenneth E. Goodson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/a37f7acf0ba04833997a9c8eac48e890
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a37f7acf0ba04833997a9c8eac48e890
record_format dspace
spelling oai:doaj.org-article:a37f7acf0ba04833997a9c8eac48e8902021-12-02T16:06:23ZPhonon Conduction in Silicon Nanobeam Labyrinths10.1038/s41598-017-06479-32045-2322https://doaj.org/article/a37f7acf0ba04833997a9c8eac48e8902017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-06479-3https://doaj.org/toc/2045-2322Abstract Here we study single-crystalline silicon nanobeams having 470 nm width and 80 nm thickness cross section, where we produce tortuous thermal paths (i.e. labyrinths) by introducing slits to control the impact of the unobstructed “line-of-sight” (LOS) between the heat source and heat sink. The labyrinths range from straight nanobeams with a complete LOS along the entire length to nanobeams in which the LOS ranges from partially to entirely blocked by introducing slits, s = 95, 195, 245, 295 and 395 nm. The measured thermal conductivity of the samples decreases monotonically from ~47 W m−1 K−1 for straight beam to ~31 W m−1 K−1 for slit width of 395 nm. A model prediction through a combination of the Boltzmann transport equation and ab initio calculations shows an excellent agreement with the experimental data to within ~8%. The model prediction for the most tortuous path (s = 395 nm) is reduced by ~14% compared to a straight beam of equivalent cross section. This study suggests that LOS is an important metric for characterizing and interpreting phonon propagation in nanostructures.Woosung ParkGiuseppe RomanoEthan C. AhnTakashi KodamaJoonsuk ParkMichael T. BarakoJoon SohnSoo Jin KimJungwan ChoAmy M. MarconnetMehdi AsheghiAlexie M. KolpakKenneth E. GoodsonNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-7 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Woosung Park
Giuseppe Romano
Ethan C. Ahn
Takashi Kodama
Joonsuk Park
Michael T. Barako
Joon Sohn
Soo Jin Kim
Jungwan Cho
Amy M. Marconnet
Mehdi Asheghi
Alexie M. Kolpak
Kenneth E. Goodson
Phonon Conduction in Silicon Nanobeam Labyrinths
description Abstract Here we study single-crystalline silicon nanobeams having 470 nm width and 80 nm thickness cross section, where we produce tortuous thermal paths (i.e. labyrinths) by introducing slits to control the impact of the unobstructed “line-of-sight” (LOS) between the heat source and heat sink. The labyrinths range from straight nanobeams with a complete LOS along the entire length to nanobeams in which the LOS ranges from partially to entirely blocked by introducing slits, s = 95, 195, 245, 295 and 395 nm. The measured thermal conductivity of the samples decreases monotonically from ~47 W m−1 K−1 for straight beam to ~31 W m−1 K−1 for slit width of 395 nm. A model prediction through a combination of the Boltzmann transport equation and ab initio calculations shows an excellent agreement with the experimental data to within ~8%. The model prediction for the most tortuous path (s = 395 nm) is reduced by ~14% compared to a straight beam of equivalent cross section. This study suggests that LOS is an important metric for characterizing and interpreting phonon propagation in nanostructures.
format article
author Woosung Park
Giuseppe Romano
Ethan C. Ahn
Takashi Kodama
Joonsuk Park
Michael T. Barako
Joon Sohn
Soo Jin Kim
Jungwan Cho
Amy M. Marconnet
Mehdi Asheghi
Alexie M. Kolpak
Kenneth E. Goodson
author_facet Woosung Park
Giuseppe Romano
Ethan C. Ahn
Takashi Kodama
Joonsuk Park
Michael T. Barako
Joon Sohn
Soo Jin Kim
Jungwan Cho
Amy M. Marconnet
Mehdi Asheghi
Alexie M. Kolpak
Kenneth E. Goodson
author_sort Woosung Park
title Phonon Conduction in Silicon Nanobeam Labyrinths
title_short Phonon Conduction in Silicon Nanobeam Labyrinths
title_full Phonon Conduction in Silicon Nanobeam Labyrinths
title_fullStr Phonon Conduction in Silicon Nanobeam Labyrinths
title_full_unstemmed Phonon Conduction in Silicon Nanobeam Labyrinths
title_sort phonon conduction in silicon nanobeam labyrinths
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/a37f7acf0ba04833997a9c8eac48e890
work_keys_str_mv AT woosungpark phononconductioninsiliconnanobeamlabyrinths
AT giusepperomano phononconductioninsiliconnanobeamlabyrinths
AT ethancahn phononconductioninsiliconnanobeamlabyrinths
AT takashikodama phononconductioninsiliconnanobeamlabyrinths
AT joonsukpark phononconductioninsiliconnanobeamlabyrinths
AT michaeltbarako phononconductioninsiliconnanobeamlabyrinths
AT joonsohn phononconductioninsiliconnanobeamlabyrinths
AT soojinkim phononconductioninsiliconnanobeamlabyrinths
AT jungwancho phononconductioninsiliconnanobeamlabyrinths
AT amymmarconnet phononconductioninsiliconnanobeamlabyrinths
AT mehdiasheghi phononconductioninsiliconnanobeamlabyrinths
AT alexiemkolpak phononconductioninsiliconnanobeamlabyrinths
AT kennethegoodson phononconductioninsiliconnanobeamlabyrinths
_version_ 1718385043247726592