A graphical modelling approach to the dissection of highly correlated transcription factor binding site profiles.

Inferring the combinatorial regulatory code of transcription factors (TFs) from genome-wide TF binding profiles is challenging. A major reason is that TF binding profiles significantly overlap and are therefore highly correlated. Clustered occurrence of multiple TFs at genomic sites may arise from c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Robert Stojnic, Audrey Qiuyan Fu, Boris Adryan
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2012
Materias:
Acceso en línea:https://doaj.org/article/a390463536a74b47932472d9de63ff85
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a390463536a74b47932472d9de63ff85
record_format dspace
spelling oai:doaj.org-article:a390463536a74b47932472d9de63ff852021-11-18T05:52:43ZA graphical modelling approach to the dissection of highly correlated transcription factor binding site profiles.1553-734X1553-735810.1371/journal.pcbi.1002725https://doaj.org/article/a390463536a74b47932472d9de63ff852012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23144600/?tool=EBIhttps://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358Inferring the combinatorial regulatory code of transcription factors (TFs) from genome-wide TF binding profiles is challenging. A major reason is that TF binding profiles significantly overlap and are therefore highly correlated. Clustered occurrence of multiple TFs at genomic sites may arise from chromatin accessibility and local cooperation between TFs, or binding sites may simply appear clustered if the profiles are generated from diverse cell populations. Overlaps in TF binding profiles may also result from measurements taken at closely related time intervals. It is thus of great interest to distinguish TFs that directly regulate gene expression from those that are indirectly associated with gene expression. Graphical models, in particular Bayesian networks, provide a powerful mathematical framework to infer different types of dependencies. However, existing methods do not perform well when the features (here: TF binding profiles) are highly correlated, when their association with the biological outcome is weak, and when the sample size is small. Here, we develop a novel computational method, the Neighbourhood Consistent PC (NCPC) algorithms, which deal with these scenarios much more effectively than existing methods do. We further present a novel graphical representation, the Direct Dependence Graph (DDGraph), to better display the complex interactions among variables. NCPC and DDGraph can also be applied to other problems involving highly correlated biological features. Both methods are implemented in the R package ddgraph, available as part of Bioconductor (http://bioconductor.org/packages/2.11/bioc/html/ddgraph.html). Applied to real data, our method identified TFs that specify different classes of cis-regulatory modules (CRMs) in Drosophila mesoderm differentiation. Our analysis also found depletion of the early transcription factor Twist binding at the CRMs regulating expression in visceral and somatic muscle cells at later stages, which suggests a CRM-specific repression mechanism that so far has not been characterised for this class of mesodermal CRMs.Robert StojnicAudrey Qiuyan FuBoris AdryanPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 8, Iss 11, p e1002725 (2012)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Robert Stojnic
Audrey Qiuyan Fu
Boris Adryan
A graphical modelling approach to the dissection of highly correlated transcription factor binding site profiles.
description Inferring the combinatorial regulatory code of transcription factors (TFs) from genome-wide TF binding profiles is challenging. A major reason is that TF binding profiles significantly overlap and are therefore highly correlated. Clustered occurrence of multiple TFs at genomic sites may arise from chromatin accessibility and local cooperation between TFs, or binding sites may simply appear clustered if the profiles are generated from diverse cell populations. Overlaps in TF binding profiles may also result from measurements taken at closely related time intervals. It is thus of great interest to distinguish TFs that directly regulate gene expression from those that are indirectly associated with gene expression. Graphical models, in particular Bayesian networks, provide a powerful mathematical framework to infer different types of dependencies. However, existing methods do not perform well when the features (here: TF binding profiles) are highly correlated, when their association with the biological outcome is weak, and when the sample size is small. Here, we develop a novel computational method, the Neighbourhood Consistent PC (NCPC) algorithms, which deal with these scenarios much more effectively than existing methods do. We further present a novel graphical representation, the Direct Dependence Graph (DDGraph), to better display the complex interactions among variables. NCPC and DDGraph can also be applied to other problems involving highly correlated biological features. Both methods are implemented in the R package ddgraph, available as part of Bioconductor (http://bioconductor.org/packages/2.11/bioc/html/ddgraph.html). Applied to real data, our method identified TFs that specify different classes of cis-regulatory modules (CRMs) in Drosophila mesoderm differentiation. Our analysis also found depletion of the early transcription factor Twist binding at the CRMs regulating expression in visceral and somatic muscle cells at later stages, which suggests a CRM-specific repression mechanism that so far has not been characterised for this class of mesodermal CRMs.
format article
author Robert Stojnic
Audrey Qiuyan Fu
Boris Adryan
author_facet Robert Stojnic
Audrey Qiuyan Fu
Boris Adryan
author_sort Robert Stojnic
title A graphical modelling approach to the dissection of highly correlated transcription factor binding site profiles.
title_short A graphical modelling approach to the dissection of highly correlated transcription factor binding site profiles.
title_full A graphical modelling approach to the dissection of highly correlated transcription factor binding site profiles.
title_fullStr A graphical modelling approach to the dissection of highly correlated transcription factor binding site profiles.
title_full_unstemmed A graphical modelling approach to the dissection of highly correlated transcription factor binding site profiles.
title_sort graphical modelling approach to the dissection of highly correlated transcription factor binding site profiles.
publisher Public Library of Science (PLoS)
publishDate 2012
url https://doaj.org/article/a390463536a74b47932472d9de63ff85
work_keys_str_mv AT robertstojnic agraphicalmodellingapproachtothedissectionofhighlycorrelatedtranscriptionfactorbindingsiteprofiles
AT audreyqiuyanfu agraphicalmodellingapproachtothedissectionofhighlycorrelatedtranscriptionfactorbindingsiteprofiles
AT borisadryan agraphicalmodellingapproachtothedissectionofhighlycorrelatedtranscriptionfactorbindingsiteprofiles
AT robertstojnic graphicalmodellingapproachtothedissectionofhighlycorrelatedtranscriptionfactorbindingsiteprofiles
AT audreyqiuyanfu graphicalmodellingapproachtothedissectionofhighlycorrelatedtranscriptionfactorbindingsiteprofiles
AT borisadryan graphicalmodellingapproachtothedissectionofhighlycorrelatedtranscriptionfactorbindingsiteprofiles
_version_ 1718424746862837760