A Study on Through-the-Thickness Heating in Continuous Ultrasonic Welding of Thermoplastic Composites
Continuous ultrasonic welding is a promising technique for joining thermoplastic composites structures together. The aim of this study was to gain further insight into what causes higher through-the-thickness heating in continuous ultrasonic welding of thermoplastic composites as compared to the sta...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a39154483bb64a75a42902a87cfb1b8f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a39154483bb64a75a42902a87cfb1b8f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a39154483bb64a75a42902a87cfb1b8f2021-11-11T18:09:13ZA Study on Through-the-Thickness Heating in Continuous Ultrasonic Welding of Thermoplastic Composites10.3390/ma142166201996-1944https://doaj.org/article/a39154483bb64a75a42902a87cfb1b8f2021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1944/14/21/6620https://doaj.org/toc/1996-1944Continuous ultrasonic welding is a promising technique for joining thermoplastic composites structures together. The aim of this study was to gain further insight into what causes higher through-the-thickness heating in continuous ultrasonic welding of thermoplastic composites as compared to the static process. Thermocouples were used to measure temperature evolutions at the welding interface and within the adherends. To understand the mechanisms causing the observed temperature behaviours, the results were compared to temperature measurements from an equivalent static welding process and to the predictions from a simplified heat transfer model. Despite the significantly higher temperatures measured at the welding interface for the continuous process, viscoelastic bulk heat generation and not thermal conduction from the interface was identified as the main cause of higher through-the-thickness heating in the top adherend. Interestingly the top adherend seemed to absorb most of the vibrational energy in the continuous process as opposed to a more balanced energy share between the top and bottom adherend in the static process. Finally, the higher temperatures at the welding interface in continuous ultrasonic welding were attributed to pre-heating of the energy director due to the vibrations being transmitted downstream of the sonotrode, to reduced squeeze-flow of energy director due to the larger adherend size, and to heat flux originating downstream as the welding process continues.Bram C. P. JongbloedJulie J. E. TeuwenRinze BenedictusIrene Fernandez VillegasMDPI AGarticlefusion bondingheat transferhigh-frequency weldingjoiningCF/PPSenergy directorTechnologyTElectrical engineering. Electronics. Nuclear engineeringTK1-9971Engineering (General). Civil engineering (General)TA1-2040MicroscopyQH201-278.5Descriptive and experimental mechanicsQC120-168.85ENMaterials, Vol 14, Iss 6620, p 6620 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
fusion bonding heat transfer high-frequency welding joining CF/PPS energy director Technology T Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 |
spellingShingle |
fusion bonding heat transfer high-frequency welding joining CF/PPS energy director Technology T Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 Bram C. P. Jongbloed Julie J. E. Teuwen Rinze Benedictus Irene Fernandez Villegas A Study on Through-the-Thickness Heating in Continuous Ultrasonic Welding of Thermoplastic Composites |
description |
Continuous ultrasonic welding is a promising technique for joining thermoplastic composites structures together. The aim of this study was to gain further insight into what causes higher through-the-thickness heating in continuous ultrasonic welding of thermoplastic composites as compared to the static process. Thermocouples were used to measure temperature evolutions at the welding interface and within the adherends. To understand the mechanisms causing the observed temperature behaviours, the results were compared to temperature measurements from an equivalent static welding process and to the predictions from a simplified heat transfer model. Despite the significantly higher temperatures measured at the welding interface for the continuous process, viscoelastic bulk heat generation and not thermal conduction from the interface was identified as the main cause of higher through-the-thickness heating in the top adherend. Interestingly the top adherend seemed to absorb most of the vibrational energy in the continuous process as opposed to a more balanced energy share between the top and bottom adherend in the static process. Finally, the higher temperatures at the welding interface in continuous ultrasonic welding were attributed to pre-heating of the energy director due to the vibrations being transmitted downstream of the sonotrode, to reduced squeeze-flow of energy director due to the larger adherend size, and to heat flux originating downstream as the welding process continues. |
format |
article |
author |
Bram C. P. Jongbloed Julie J. E. Teuwen Rinze Benedictus Irene Fernandez Villegas |
author_facet |
Bram C. P. Jongbloed Julie J. E. Teuwen Rinze Benedictus Irene Fernandez Villegas |
author_sort |
Bram C. P. Jongbloed |
title |
A Study on Through-the-Thickness Heating in Continuous Ultrasonic Welding of Thermoplastic Composites |
title_short |
A Study on Through-the-Thickness Heating in Continuous Ultrasonic Welding of Thermoplastic Composites |
title_full |
A Study on Through-the-Thickness Heating in Continuous Ultrasonic Welding of Thermoplastic Composites |
title_fullStr |
A Study on Through-the-Thickness Heating in Continuous Ultrasonic Welding of Thermoplastic Composites |
title_full_unstemmed |
A Study on Through-the-Thickness Heating in Continuous Ultrasonic Welding of Thermoplastic Composites |
title_sort |
study on through-the-thickness heating in continuous ultrasonic welding of thermoplastic composites |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/a39154483bb64a75a42902a87cfb1b8f |
work_keys_str_mv |
AT bramcpjongbloed astudyonthroughthethicknessheatingincontinuousultrasonicweldingofthermoplasticcomposites AT juliejeteuwen astudyonthroughthethicknessheatingincontinuousultrasonicweldingofthermoplasticcomposites AT rinzebenedictus astudyonthroughthethicknessheatingincontinuousultrasonicweldingofthermoplasticcomposites AT irenefernandezvillegas astudyonthroughthethicknessheatingincontinuousultrasonicweldingofthermoplasticcomposites AT bramcpjongbloed studyonthroughthethicknessheatingincontinuousultrasonicweldingofthermoplasticcomposites AT juliejeteuwen studyonthroughthethicknessheatingincontinuousultrasonicweldingofthermoplasticcomposites AT rinzebenedictus studyonthroughthethicknessheatingincontinuousultrasonicweldingofthermoplasticcomposites AT irenefernandezvillegas studyonthroughthethicknessheatingincontinuousultrasonicweldingofthermoplasticcomposites |
_version_ |
1718431961326813184 |