Data-Driven Intelligence System for General Recommendations of Deep Learning Architectures
Choosing optimal Deep Learning (DL) architecture and hyperparameters for a particular problem is still not a trivial task among researchers. The most common approach relies on popular architectures proven to work on specific problem domains led on the same experiment environment and setup. However,...
Guardado en:
Autores principales: | Gjorgji Noveski, Tome Eftimov, Kostadin Mishev, Monika Simjanoska |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a3946492f9bb404e997257a5e51cbebf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Efficient Heartbeats Classifier Based on Optimizing Convolutional Neural Network Model
por: Eman Maghawry, et al.
Publicado: (2021) -
Artificial Intelligence-Driven Real-Time Automatic Modulation Classification Scheme for Next-Generation Cellular Networks
por: Zeeshan Kaleem, et al.
Publicado: (2021) -
Improving Unsupervised Domain Adaptive Re-Identification Via Source-Guided Selection of Pseudo-Labeling Hyperparameters
por: Fabian Dubourvieux, et al.
Publicado: (2021) -
Approaches to Multi-Objective Feature Selection: A Systematic Literature Review
por: Qasem Al-Tashi, et al.
Publicado: (2020) -
Artificial Intelligence (AI) and Lung Ultrasound in Infectious Pulmonary Disease
por: Guglielmo Trovato, et al.
Publicado: (2021)