Brain MR Image Enhancement for Tumor Segmentation Using 3D U-Net
MRI images are visually inspected by domain experts for the analysis and quantification of the tumorous tissues. Due to the large volumetric data, manual reporting on the images is subjective, cumbersome, and error prone. To address these problems, automatic image analysis tools are employed for tum...
        Enregistré dans:
      
    
                  | Auteurs principaux: | Faizad Ullah, Shahab U. Ansari, Muhammad Hanif, Mohamed Arselene Ayari, Muhammad Enamul Hoque Chowdhury, Amith Abdullah Khandakar, Muhammad Salman Khan | 
|---|---|
| Format: | article | 
| Langue: | EN | 
| Publié: | 
        
      MDPI AG    
    
      2021
     | 
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/a3a21b2648b641f7bead0236f81207a2 | 
| Tags: | 
       Ajouter un tag    
     
      Pas de tags, Soyez le premier à ajouter un tag!
   
 | 
Documents similaires
- 
                
        
          Customized Slab-Segmentation Method for Projection-Artifact Elimination in Best Vitelliform Macular Dystrophy: A Swept-Source Optical Coherence Tomography Angiography Study        
                  
par: Moussa M, et autres
Publié: (2021) - 
                
        
          Study on character recognition algorithm for end face of bundled special steel bars        
                  
par: Fuxiang ZHANG, et autres
Publié: (2021) - 
                
        
          HPS-Net: Multi-Task Network for Medical Image Segmentation with Predictable Performance        
                  
par: Xin Wei, et autres
Publié: (2021) - 
                
        
          An Interval Iteration Based Multilevel Thresholding Algorithm for Brain MR Image Segmentation        
                  
par: Yuncong Feng, et autres
Publié: (2021) - 
                
        
          Voxel-Wise Adversarial FiboNet for 3D Cerebrovascular Segmentation on Magnetic Resonance Angiography Images        
                  
par: Bin Guo, et autres
Publié: (2021)