Improving prediction and assessment of global fires using multilayer neural networks
Abstract Fires determine vegetation patterns, impact human societies, and are a part of complex feedbacks into the global climate system. Empirical and process-based models differ in their scale and mechanistic assumptions, giving divergent predictions of fire drivers and extent. Although humans hav...
Guardado en:
Autores principales: | Jaideep Joshi, Raman Sukumar |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a3ab8a19941149dc9df7cb901805c0e6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The predictive skill of convolutional neural networks models for disease forecasting.
por: Kookjin Lee, et al.
Publicado: (2021) -
Research on Practical Intelligent Mode of Digital Image Economy Based on Improved Genetic Multilayer Neural Network
por: Min Guo, et al.
Publicado: (2021) -
High-frequency conductivity at Larmor-frequency in human brain using moving local window multilayer perceptron neural network.
por: Mun Bae Lee, et al.
Publicado: (2021) -
Efficient and self-adaptive in-situ learning in multilayer memristor neural networks
por: Can Li, et al.
Publicado: (2018) -
Skilful forecasting of global fire activity using seasonal climate predictions
por: Marco Turco, et al.
Publicado: (2018)