Examining Bayesian network modeling in identification of dangerous driving behavior.
Traffic safety problems are still very serious and human factor is the one of most important factors affecting traffic crashes. Taking Next Generation Simulation (NGSIM) data as the research object, this study defines six control indicators and uses principal component analysis and K-means++ cluster...
Guardado en:
Autores principales: | Yichuan Peng, Leyi Cheng, Yuming Jiang, Shengxue Zhu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a3b304ca475c4926bb71446592a08a02 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Towards examining and addressing the danger of unaccompanied migrant minors going missing
por: Isabelle Brantl, et al.
Publicado: (2021) -
DropConnect is effective in modeling uncertainty of Bayesian deep networks
por: Aryan Mobiny, et al.
Publicado: (2021) -
Effectiveness of simple interventions to remind eye doctors to educate glaucoma patients about the dangers of driving
por: Adeline Low, et al.
Publicado: (2021) -
Bayesian network-based missing mechanism identification (BN-MMI) method in medical research
por: Tingyan Yue, et al.
Publicado: (2021) -
Seepage behavior assessment of earth-rock dams based on Bayesian network
por: Lu He, et al.
Publicado: (2021)