Deep representation learning of electronic health records to unlock patient stratification at scale
Abstract Deriving disease subtypes from electronic health records (EHRs) can guide next-generation personalized medicine. However, challenges in summarizing and representing patient data prevent widespread practice of scalable EHR-based stratification analysis. Here we present an unsupervised framew...
Guardado en:
Autores principales: | Isotta Landi, Benjamin S. Glicksberg, Hao-Chih Lee, Sarah Cherng, Giulia Landi, Matteo Danieletto, Joel T. Dudley, Cesare Furlanello, Riccardo Miotto |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a3c812cf99b140a5b237ea6ab049acf1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning for patient risk stratification: standing on, or looking over, the shoulders of clinicians?
por: Brett K. Beaulieu-Jones, et al.
Publicado: (2021) -
Evaluating risk stratification scoring systems to predict mortality in patients with COVID-19
por: Naveen Garg, et al.
Publicado: (2021) -
Quantitative disease risk scores from EHR with applications to clinical risk stratification and genetic studies
por: Danqing Xu, et al.
Publicado: (2021) -
Fine-Tuning Word Embeddings for Hierarchical Representation of Data Using a Corpus and a Knowledge Base for Various Machine Learning Applications
por: Mohammed Alsuhaibani, et al.
Publicado: (2021) -
Individual-patient prediction of meningioma malignancy and survival using the Surveillance, Epidemiology, and End Results database
por: Jeremy T. Moreau, et al.
Publicado: (2020)