Multi-Level Refinement Feature Pyramid Network for Scale Imbalance Object Detection
Object detection becomes a challenge due to diversity of object scales. In general, modern object detectors use feature pyramid to learn multi-scale representation for better results. However, current versions of feature pyramid are insufficient to handle scale imbalance, as it is inefficient to int...
Guardado en:
Autores principales: | Lubna Aziz, Md Sah Bin Haji Salam, Usman Ullah Sheikh, Surat Khan, Huma Ayub, Sara Ayub |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a3cdd6daffe54b7a8d1e2056afb40d3a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
SEFPN: Scale-Equalizing Feature Pyramid Network for Object Detection
por: Zhiqiang Zhang, et al.
Publicado: (2021) -
Dynamic Object Detection Algorithm Based on Lightweight Shared Feature Pyramid
por: Li Zhu, et al.
Publicado: (2021) -
Smoothing Complete Feature Pyramid Networks for Roll Mark Detection of Steel Strips
por: Qiwu Luo, et al.
Publicado: (2021) -
Tomato Young Fruits Detection Method under Near Color Background Based on Improved Faster R-CNN with Attention Mechanism
por: Peng Wang, et al.
Publicado: (2021) -
A Fast Lightweight 3D Separable Convolutional Neural Network With Multi-Input Multi-Output for Moving Object Detection
por: Bingxin Hou, et al.
Publicado: (2021)