Multi-Level Refinement Feature Pyramid Network for Scale Imbalance Object Detection
Object detection becomes a challenge due to diversity of object scales. In general, modern object detectors use feature pyramid to learn multi-scale representation for better results. However, current versions of feature pyramid are insufficient to handle scale imbalance, as it is inefficient to int...
Enregistré dans:
Auteurs principaux: | Lubna Aziz, Md Sah Bin Haji Salam, Usman Ullah Sheikh, Surat Khan, Huma Ayub, Sara Ayub |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a3cdd6daffe54b7a8d1e2056afb40d3a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
SEFPN: Scale-Equalizing Feature Pyramid Network for Object Detection
par: Zhiqiang Zhang, et autres
Publié: (2021) -
Dynamic Object Detection Algorithm Based on Lightweight Shared Feature Pyramid
par: Li Zhu, et autres
Publié: (2021) -
Smoothing Complete Feature Pyramid Networks for Roll Mark Detection of Steel Strips
par: Qiwu Luo, et autres
Publié: (2021) -
Tomato Young Fruits Detection Method under Near Color Background Based on Improved Faster R-CNN with Attention Mechanism
par: Peng Wang, et autres
Publié: (2021) -
A Fast Lightweight 3D Separable Convolutional Neural Network With Multi-Input Multi-Output for Moving Object Detection
par: Bingxin Hou, et autres
Publié: (2021)