Cortical thickness, gyrification and sulcal depth in trigeminal neuralgia
Abstract Neuroimaging studies have documented brain structural alterations induced by chronic pain, particularly in gray matter volume. However, the effects of trigeminal neuralgia (TN), a severe paroxysmal pain disorder, on cortical morphology are not yet known. In this study, we recruited 30 TN pa...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a3f57af8169b49c997e849c9d5cfdd25 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Neuroimaging studies have documented brain structural alterations induced by chronic pain, particularly in gray matter volume. However, the effects of trigeminal neuralgia (TN), a severe paroxysmal pain disorder, on cortical morphology are not yet known. In this study, we recruited 30 TN patients and 30 age-, and gender-matched healthy controls (HCs). Using Computational Anatomy Toolbox (CAT12), we calculated and compared group differences in cortical thickness, gyrification, and sulcal depth with two-sample t tests (p < 0.05, multiple comparison corrected). Relationships between altered cortical characteristics and pain intensity were investigated with correlation analysis. Compared to HCs, TN patients exhibited significantly decreased cortical thickness in the left inferior frontal, and left medial orbitofrontal cortex; decreased gyrification in the left superior frontal cortex; and decreased sulcal depth in the bilateral superior frontal (extending to anterior cingulate) cortex. In addition, we found significantly negative correlations between the mean cortical thickness in left medial orbitofrontal cortex and pain intensity, and between the mean gyrification in left superior frontal cortex and pain intensity. Chronic pain may be associated with abnormal cortical thickness, gyrification and sulcal depth in trigeminal neuralgia. These morphological changes might contribute to understand the underlying neurobiological mechanism of trigeminal neuralgia. |
---|