The neural dynamics of hierarchical Bayesian causal inference in multisensory perception
How do we make inferences about the source of sensory signals? Here, the authors use Bayesian causal modeling and measures of neural activity to show how the brain dynamically codes for and combines sensory signals to draw causal inferences.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a434c215c566478aab102f7709740109 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | How do we make inferences about the source of sensory signals? Here, the authors use Bayesian causal modeling and measures of neural activity to show how the brain dynamically codes for and combines sensory signals to draw causal inferences. |
---|