The neural dynamics of hierarchical Bayesian causal inference in multisensory perception
How do we make inferences about the source of sensory signals? Here, the authors use Bayesian causal modeling and measures of neural activity to show how the brain dynamically codes for and combines sensory signals to draw causal inferences.
Guardado en:
Autores principales: | Tim Rohe, Ann-Christine Ehlis, Uta Noppeney |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a434c215c566478aab102f7709740109 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Cortical hierarchies perform Bayesian causal inference in multisensory perception.
por: Tim Rohe, et al.
Publicado: (2015) -
To integrate or not to integrate: Temporal dynamics of hierarchical Bayesian causal inference.
por: Máté Aller, et al.
Publicado: (2019) -
Multisensory oddity detection as bayesian inference.
por: Timothy Hospedales, et al.
Publicado: (2009) -
Multisensory Perception of Contradictory Information in an Environment of Varying Reliability: Evidence for Conscious Perception and Optimal Causal Inference
por: Mohammad-Ali Nikouei Mahani, et al.
Publicado: (2017) -
Neural coding of prior expectations in hierarchical intention inference
por: Valerian Chambon, et al.
Publicado: (2017)