Evaluation of time-varying working posture based on interjoint coordination features extracted from sparse structure learning

To evaluate tasks that have low physical workloads or small variations in the working postures, a method that can be used to analyze slight differences in postures and movements based on human motion characteristics is required. The interjoint coordination, which produces multijoint movements by org...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kazuki HIRANAI, Akihiko SEO
Formato: article
Lenguaje:EN
Publicado: The Japan Society of Mechanical Engineers 2021
Materias:
Acceso en línea:https://doaj.org/article/a440296d837249d081ba89c8cbb2ca3a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a440296d837249d081ba89c8cbb2ca3a
record_format dspace
spelling oai:doaj.org-article:a440296d837249d081ba89c8cbb2ca3a2021-11-29T06:04:29ZEvaluation of time-varying working posture based on interjoint coordination features extracted from sparse structure learning2187-974510.1299/mej.20-00500https://doaj.org/article/a440296d837249d081ba89c8cbb2ca3a2021-02-01T00:00:00Zhttps://www.jstage.jst.go.jp/article/mej/8/1/8_20-00500/_pdf/-char/enhttps://doaj.org/toc/2187-9745To evaluate tasks that have low physical workloads or small variations in the working postures, a method that can be used to analyze slight differences in postures and movements based on human motion characteristics is required. The interjoint coordination, which produces multijoint movements by organizing the redundant degrees of freedom into fewer major covarying relationships, is one of the primary characteristics of human motion. This work proposes a novel evaluation method for interjoint coordination using the graphical lasso and clarifies its efficacy for evaluations of interjoint coordination in complete tasks as well as time-varying interjoint coordination and working postures. In a subject experiment, eleven male participants performed lightweight material-handling tasks under different working conditions and paces, and an electromagnetic motion-tracking system was used to measure their working postures. The principal interjoint coordination for measured joint angles was extracted using the graphical lasso tool as a sparse precision matrix. Further, the contribution of each joint angle to the changes in the working postures in the time series was calculated by correlation anomaly using the graphical lasso. The estimated sparse precision matrix using the graphical lasso suggested that the principal interjoint coordination reflecting the differences in movement strategies by task type can be extracted in comparison with the covariance matrix. The time-varying correlation anomaly score suggested that the joint angle that contributes to differences between interjoint coordination at the onset and termination of tasks could be determined according to the final score. Therefore, our study shows the efficacy of the graphical lasso for evaluation of interjoint coordination and working postures from the time series for repetitive lightweight material-handling tasks.Kazuki HIRANAIAkihiko SEOThe Japan Society of Mechanical Engineersarticleanomaly detectionfeature extractionsparse structure learninginterjoint coordinationrepetitive taskhuman motion analysisworking postureMechanical engineering and machineryTJ1-1570ENMechanical Engineering Journal, Vol 8, Iss 1, Pp 20-00500-20-00500 (2021)
institution DOAJ
collection DOAJ
language EN
topic anomaly detection
feature extraction
sparse structure learning
interjoint coordination
repetitive task
human motion analysis
working posture
Mechanical engineering and machinery
TJ1-1570
spellingShingle anomaly detection
feature extraction
sparse structure learning
interjoint coordination
repetitive task
human motion analysis
working posture
Mechanical engineering and machinery
TJ1-1570
Kazuki HIRANAI
Akihiko SEO
Evaluation of time-varying working posture based on interjoint coordination features extracted from sparse structure learning
description To evaluate tasks that have low physical workloads or small variations in the working postures, a method that can be used to analyze slight differences in postures and movements based on human motion characteristics is required. The interjoint coordination, which produces multijoint movements by organizing the redundant degrees of freedom into fewer major covarying relationships, is one of the primary characteristics of human motion. This work proposes a novel evaluation method for interjoint coordination using the graphical lasso and clarifies its efficacy for evaluations of interjoint coordination in complete tasks as well as time-varying interjoint coordination and working postures. In a subject experiment, eleven male participants performed lightweight material-handling tasks under different working conditions and paces, and an electromagnetic motion-tracking system was used to measure their working postures. The principal interjoint coordination for measured joint angles was extracted using the graphical lasso tool as a sparse precision matrix. Further, the contribution of each joint angle to the changes in the working postures in the time series was calculated by correlation anomaly using the graphical lasso. The estimated sparse precision matrix using the graphical lasso suggested that the principal interjoint coordination reflecting the differences in movement strategies by task type can be extracted in comparison with the covariance matrix. The time-varying correlation anomaly score suggested that the joint angle that contributes to differences between interjoint coordination at the onset and termination of tasks could be determined according to the final score. Therefore, our study shows the efficacy of the graphical lasso for evaluation of interjoint coordination and working postures from the time series for repetitive lightweight material-handling tasks.
format article
author Kazuki HIRANAI
Akihiko SEO
author_facet Kazuki HIRANAI
Akihiko SEO
author_sort Kazuki HIRANAI
title Evaluation of time-varying working posture based on interjoint coordination features extracted from sparse structure learning
title_short Evaluation of time-varying working posture based on interjoint coordination features extracted from sparse structure learning
title_full Evaluation of time-varying working posture based on interjoint coordination features extracted from sparse structure learning
title_fullStr Evaluation of time-varying working posture based on interjoint coordination features extracted from sparse structure learning
title_full_unstemmed Evaluation of time-varying working posture based on interjoint coordination features extracted from sparse structure learning
title_sort evaluation of time-varying working posture based on interjoint coordination features extracted from sparse structure learning
publisher The Japan Society of Mechanical Engineers
publishDate 2021
url https://doaj.org/article/a440296d837249d081ba89c8cbb2ca3a
work_keys_str_mv AT kazukihiranai evaluationoftimevaryingworkingposturebasedoninterjointcoordinationfeaturesextractedfromsparsestructurelearning
AT akihikoseo evaluationoftimevaryingworkingposturebasedoninterjointcoordinationfeaturesextractedfromsparsestructurelearning
_version_ 1718407603755679744