Validation of optimal reference genes for quantitative real time PCR in muscle and adipose tissue for obesity and diabetes research

Abstract The global incidence of obesity has led to an increasing need for understanding the molecular mechanisms that drive this epidemic and its comorbidities. Quantitative real-time RT-PCR (RT-qPCR) is the most reliable and widely used method for gene expression analysis. The selection of suitabl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lester J. Perez, Liliam Rios, Purvi Trivedi, Kenneth D’Souza, Andrew Cowie, Carine Nzirorera, Duncan Webster, Keith Brunt, Jean-Francois Legare, Ansar Hassan, Petra C. Kienesberger, Thomas Pulinilkunnil
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/a44ca9d6535b468986ac3dcbda46d949
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a44ca9d6535b468986ac3dcbda46d949
record_format dspace
spelling oai:doaj.org-article:a44ca9d6535b468986ac3dcbda46d9492021-12-02T11:53:10ZValidation of optimal reference genes for quantitative real time PCR in muscle and adipose tissue for obesity and diabetes research10.1038/s41598-017-03730-92045-2322https://doaj.org/article/a44ca9d6535b468986ac3dcbda46d9492017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-03730-9https://doaj.org/toc/2045-2322Abstract The global incidence of obesity has led to an increasing need for understanding the molecular mechanisms that drive this epidemic and its comorbidities. Quantitative real-time RT-PCR (RT-qPCR) is the most reliable and widely used method for gene expression analysis. The selection of suitable reference genes (RGs) is critical for obtaining accurate gene expression information. The current study aimed to identify optimal RGs to perform quantitative transcriptomic analysis based on RT-qPCR for obesity and diabetes research, employing in vitro and mouse models, and human tissue samples. Using the ReFinder program we evaluated the stability of a total of 15 RGs. The impact of choosing the most suitable RGs versus less suitable RGs on RT-qPCR results was assessed. Optimal RGs differed between tissue and cell type, species, and experimental conditions. By employing different sets of RGs to normalize the mRNA expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), we show that sub-optimal RGs can markedly alter the PGC1α gene expression profile. Our study demonstrates the importance of validating RGs prior to normalizing transcriptional expression levels of target genes and identifies optimal RG pairs for reliable RT-qPCR normalization in cells and in human and murine muscle and adipose tissue for obesity/diabetes research.Lester J. PerezLiliam RiosPurvi TrivediKenneth D’SouzaAndrew CowieCarine NziroreraDuncan WebsterKeith BruntJean-Francois LegareAnsar HassanPetra C. KienesbergerThomas PulinilkunnilNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-13 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Lester J. Perez
Liliam Rios
Purvi Trivedi
Kenneth D’Souza
Andrew Cowie
Carine Nzirorera
Duncan Webster
Keith Brunt
Jean-Francois Legare
Ansar Hassan
Petra C. Kienesberger
Thomas Pulinilkunnil
Validation of optimal reference genes for quantitative real time PCR in muscle and adipose tissue for obesity and diabetes research
description Abstract The global incidence of obesity has led to an increasing need for understanding the molecular mechanisms that drive this epidemic and its comorbidities. Quantitative real-time RT-PCR (RT-qPCR) is the most reliable and widely used method for gene expression analysis. The selection of suitable reference genes (RGs) is critical for obtaining accurate gene expression information. The current study aimed to identify optimal RGs to perform quantitative transcriptomic analysis based on RT-qPCR for obesity and diabetes research, employing in vitro and mouse models, and human tissue samples. Using the ReFinder program we evaluated the stability of a total of 15 RGs. The impact of choosing the most suitable RGs versus less suitable RGs on RT-qPCR results was assessed. Optimal RGs differed between tissue and cell type, species, and experimental conditions. By employing different sets of RGs to normalize the mRNA expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), we show that sub-optimal RGs can markedly alter the PGC1α gene expression profile. Our study demonstrates the importance of validating RGs prior to normalizing transcriptional expression levels of target genes and identifies optimal RG pairs for reliable RT-qPCR normalization in cells and in human and murine muscle and adipose tissue for obesity/diabetes research.
format article
author Lester J. Perez
Liliam Rios
Purvi Trivedi
Kenneth D’Souza
Andrew Cowie
Carine Nzirorera
Duncan Webster
Keith Brunt
Jean-Francois Legare
Ansar Hassan
Petra C. Kienesberger
Thomas Pulinilkunnil
author_facet Lester J. Perez
Liliam Rios
Purvi Trivedi
Kenneth D’Souza
Andrew Cowie
Carine Nzirorera
Duncan Webster
Keith Brunt
Jean-Francois Legare
Ansar Hassan
Petra C. Kienesberger
Thomas Pulinilkunnil
author_sort Lester J. Perez
title Validation of optimal reference genes for quantitative real time PCR in muscle and adipose tissue for obesity and diabetes research
title_short Validation of optimal reference genes for quantitative real time PCR in muscle and adipose tissue for obesity and diabetes research
title_full Validation of optimal reference genes for quantitative real time PCR in muscle and adipose tissue for obesity and diabetes research
title_fullStr Validation of optimal reference genes for quantitative real time PCR in muscle and adipose tissue for obesity and diabetes research
title_full_unstemmed Validation of optimal reference genes for quantitative real time PCR in muscle and adipose tissue for obesity and diabetes research
title_sort validation of optimal reference genes for quantitative real time pcr in muscle and adipose tissue for obesity and diabetes research
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/a44ca9d6535b468986ac3dcbda46d949
work_keys_str_mv AT lesterjperez validationofoptimalreferencegenesforquantitativerealtimepcrinmuscleandadiposetissueforobesityanddiabetesresearch
AT liliamrios validationofoptimalreferencegenesforquantitativerealtimepcrinmuscleandadiposetissueforobesityanddiabetesresearch
AT purvitrivedi validationofoptimalreferencegenesforquantitativerealtimepcrinmuscleandadiposetissueforobesityanddiabetesresearch
AT kennethdsouza validationofoptimalreferencegenesforquantitativerealtimepcrinmuscleandadiposetissueforobesityanddiabetesresearch
AT andrewcowie validationofoptimalreferencegenesforquantitativerealtimepcrinmuscleandadiposetissueforobesityanddiabetesresearch
AT carinenzirorera validationofoptimalreferencegenesforquantitativerealtimepcrinmuscleandadiposetissueforobesityanddiabetesresearch
AT duncanwebster validationofoptimalreferencegenesforquantitativerealtimepcrinmuscleandadiposetissueforobesityanddiabetesresearch
AT keithbrunt validationofoptimalreferencegenesforquantitativerealtimepcrinmuscleandadiposetissueforobesityanddiabetesresearch
AT jeanfrancoislegare validationofoptimalreferencegenesforquantitativerealtimepcrinmuscleandadiposetissueforobesityanddiabetesresearch
AT ansarhassan validationofoptimalreferencegenesforquantitativerealtimepcrinmuscleandadiposetissueforobesityanddiabetesresearch
AT petrackienesberger validationofoptimalreferencegenesforquantitativerealtimepcrinmuscleandadiposetissueforobesityanddiabetesresearch
AT thomaspulinilkunnil validationofoptimalreferencegenesforquantitativerealtimepcrinmuscleandadiposetissueforobesityanddiabetesresearch
_version_ 1718394884594860032