A bio-inspired methodology of identifying influential nodes in complex networks.

How to identify influential nodes is a key issue in complex networks. The degree centrality is simple, but is incapable to reflect the global characteristics of networks. Betweenness centrality and closeness centrality do not consider the location of nodes in the networks, and semi-local centrality,...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Cai Gao, Xin Lan, Xiaoge Zhang, Yong Deng
Format: article
Langue:EN
Publié: Public Library of Science (PLoS) 2013
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/a44f16e164064c9bbd2f225b08d99b27
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:How to identify influential nodes is a key issue in complex networks. The degree centrality is simple, but is incapable to reflect the global characteristics of networks. Betweenness centrality and closeness centrality do not consider the location of nodes in the networks, and semi-local centrality, leaderRank and pageRank approaches can be only applied in unweighted networks. In this paper, a bio-inspired centrality measure model is proposed, which combines the Physarum centrality with the K-shell index obtained by K-shell decomposition analysis, to identify influential nodes in weighted networks. Then, we use the Susceptible-Infected (SI) model to evaluate the performance. Examples and applications are given to demonstrate the adaptivity and efficiency of the proposed method. In addition, the results are compared with existing methods.