Time-covariant Schrödinger equation and invariant decay probability: the $$\Lambda $$ Λ -Kantowski–Sachs universe

Abstract The system under study is the $$\Lambda $$ Λ -Kantowski–Sachs universe. Its canonical quantization is provided based on a recently developed method: the singular minisuperspace Lagrangian describing the system, is reduced to a regular (by inserting into the dynamical equations the lapse dic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Theodoros Pailas, Nikolaos Dimakis, Petros A. Terzis, Theodosios Christodoulakis
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
Acceso en línea:https://doaj.org/article/a45e14ed53fa4ad2b2819b7052e8c79c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a45e14ed53fa4ad2b2819b7052e8c79c
record_format dspace
spelling oai:doaj.org-article:a45e14ed53fa4ad2b2819b7052e8c79c2021-12-05T12:09:12ZTime-covariant Schrödinger equation and invariant decay probability: the $$\Lambda $$ Λ -Kantowski–Sachs universe10.1140/epjc/s10052-021-09866-31434-60441434-6052https://doaj.org/article/a45e14ed53fa4ad2b2819b7052e8c79c2021-12-01T00:00:00Zhttps://doi.org/10.1140/epjc/s10052-021-09866-3https://doaj.org/toc/1434-6044https://doaj.org/toc/1434-6052Abstract The system under study is the $$\Lambda $$ Λ -Kantowski–Sachs universe. Its canonical quantization is provided based on a recently developed method: the singular minisuperspace Lagrangian describing the system, is reduced to a regular (by inserting into the dynamical equations the lapse dictated by the quadratic constraint) possessing an explicit (though arbitrary) time dependence; thus a time-covariant Schrödinger equation arises. Additionally, an invariant (under transformations $$t=f({\tilde{t}})$$ t = f ( t ~ ) ) decay probability is defined and thus “observers” which correspond to different gauge choices obtain, by default, the same results. The time of decay for a Gaussian wave packet localized around the point $$a=0$$ a = 0 (where a the radial scale factor) is calculated to be of the order $$\sim 10^{-42}{-}10^{-41}~\text {s}$$ ∼ 10 - 42 - 10 - 41 s . The acquired value is near the end of the Planck era (when comparing to a FLRW universe), during which the quantum effects are most prominent. Some of the results are compared to those obtained by following the well known canonical quantization of cosmological systems, i.e. the solutions of the Wheeler–DeWitt equation.Theodoros PailasNikolaos DimakisPetros A. TerzisTheodosios ChristodoulakisSpringerOpenarticleAstrophysicsQB460-466Nuclear and particle physics. Atomic energy. RadioactivityQC770-798ENEuropean Physical Journal C: Particles and Fields, Vol 81, Iss 12, Pp 1-16 (2021)
institution DOAJ
collection DOAJ
language EN
topic Astrophysics
QB460-466
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
spellingShingle Astrophysics
QB460-466
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
Theodoros Pailas
Nikolaos Dimakis
Petros A. Terzis
Theodosios Christodoulakis
Time-covariant Schrödinger equation and invariant decay probability: the $$\Lambda $$ Λ -Kantowski–Sachs universe
description Abstract The system under study is the $$\Lambda $$ Λ -Kantowski–Sachs universe. Its canonical quantization is provided based on a recently developed method: the singular minisuperspace Lagrangian describing the system, is reduced to a regular (by inserting into the dynamical equations the lapse dictated by the quadratic constraint) possessing an explicit (though arbitrary) time dependence; thus a time-covariant Schrödinger equation arises. Additionally, an invariant (under transformations $$t=f({\tilde{t}})$$ t = f ( t ~ ) ) decay probability is defined and thus “observers” which correspond to different gauge choices obtain, by default, the same results. The time of decay for a Gaussian wave packet localized around the point $$a=0$$ a = 0 (where a the radial scale factor) is calculated to be of the order $$\sim 10^{-42}{-}10^{-41}~\text {s}$$ ∼ 10 - 42 - 10 - 41 s . The acquired value is near the end of the Planck era (when comparing to a FLRW universe), during which the quantum effects are most prominent. Some of the results are compared to those obtained by following the well known canonical quantization of cosmological systems, i.e. the solutions of the Wheeler–DeWitt equation.
format article
author Theodoros Pailas
Nikolaos Dimakis
Petros A. Terzis
Theodosios Christodoulakis
author_facet Theodoros Pailas
Nikolaos Dimakis
Petros A. Terzis
Theodosios Christodoulakis
author_sort Theodoros Pailas
title Time-covariant Schrödinger equation and invariant decay probability: the $$\Lambda $$ Λ -Kantowski–Sachs universe
title_short Time-covariant Schrödinger equation and invariant decay probability: the $$\Lambda $$ Λ -Kantowski–Sachs universe
title_full Time-covariant Schrödinger equation and invariant decay probability: the $$\Lambda $$ Λ -Kantowski–Sachs universe
title_fullStr Time-covariant Schrödinger equation and invariant decay probability: the $$\Lambda $$ Λ -Kantowski–Sachs universe
title_full_unstemmed Time-covariant Schrödinger equation and invariant decay probability: the $$\Lambda $$ Λ -Kantowski–Sachs universe
title_sort time-covariant schrödinger equation and invariant decay probability: the $$\lambda $$ λ -kantowski–sachs universe
publisher SpringerOpen
publishDate 2021
url https://doaj.org/article/a45e14ed53fa4ad2b2819b7052e8c79c
work_keys_str_mv AT theodorospailas timecovariantschrodingerequationandinvariantdecayprobabilitythelambdalkantowskisachsuniverse
AT nikolaosdimakis timecovariantschrodingerequationandinvariantdecayprobabilitythelambdalkantowskisachsuniverse
AT petrosaterzis timecovariantschrodingerequationandinvariantdecayprobabilitythelambdalkantowskisachsuniverse
AT theodosioschristodoulakis timecovariantschrodingerequationandinvariantdecayprobabilitythelambdalkantowskisachsuniverse
_version_ 1718372210720112640