scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses

Single-cell RNA-Seq suffers from heterogeneity in sequencing sparsity and complex differential patterns in gene expression. Here, the authors introduce a graph neural network based on a hypothesis-free deep learning framework as an effective representation of gene expression and cell–cell relationsh...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Juexin Wang, Anjun Ma, Yuzhou Chang, Jianting Gong, Yuexu Jiang, Ren Qi, Cankun Wang, Hongjun Fu, Qin Ma, Dong Xu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/a461a5e31f27497ea7c1e605964bab0a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a461a5e31f27497ea7c1e605964bab0a
record_format dspace
spelling oai:doaj.org-article:a461a5e31f27497ea7c1e605964bab0a2021-12-02T11:44:56ZscGNN is a novel graph neural network framework for single-cell RNA-Seq analyses10.1038/s41467-021-22197-x2041-1723https://doaj.org/article/a461a5e31f27497ea7c1e605964bab0a2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22197-xhttps://doaj.org/toc/2041-1723Single-cell RNA-Seq suffers from heterogeneity in sequencing sparsity and complex differential patterns in gene expression. Here, the authors introduce a graph neural network based on a hypothesis-free deep learning framework as an effective representation of gene expression and cell–cell relationships.Juexin WangAnjun MaYuzhou ChangJianting GongYuexu JiangRen QiCankun WangHongjun FuQin MaDong XuNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Juexin Wang
Anjun Ma
Yuzhou Chang
Jianting Gong
Yuexu Jiang
Ren Qi
Cankun Wang
Hongjun Fu
Qin Ma
Dong Xu
scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses
description Single-cell RNA-Seq suffers from heterogeneity in sequencing sparsity and complex differential patterns in gene expression. Here, the authors introduce a graph neural network based on a hypothesis-free deep learning framework as an effective representation of gene expression and cell–cell relationships.
format article
author Juexin Wang
Anjun Ma
Yuzhou Chang
Jianting Gong
Yuexu Jiang
Ren Qi
Cankun Wang
Hongjun Fu
Qin Ma
Dong Xu
author_facet Juexin Wang
Anjun Ma
Yuzhou Chang
Jianting Gong
Yuexu Jiang
Ren Qi
Cankun Wang
Hongjun Fu
Qin Ma
Dong Xu
author_sort Juexin Wang
title scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses
title_short scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses
title_full scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses
title_fullStr scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses
title_full_unstemmed scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses
title_sort scgnn is a novel graph neural network framework for single-cell rna-seq analyses
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/a461a5e31f27497ea7c1e605964bab0a
work_keys_str_mv AT juexinwang scgnnisanovelgraphneuralnetworkframeworkforsinglecellrnaseqanalyses
AT anjunma scgnnisanovelgraphneuralnetworkframeworkforsinglecellrnaseqanalyses
AT yuzhouchang scgnnisanovelgraphneuralnetworkframeworkforsinglecellrnaseqanalyses
AT jiantinggong scgnnisanovelgraphneuralnetworkframeworkforsinglecellrnaseqanalyses
AT yuexujiang scgnnisanovelgraphneuralnetworkframeworkforsinglecellrnaseqanalyses
AT renqi scgnnisanovelgraphneuralnetworkframeworkforsinglecellrnaseqanalyses
AT cankunwang scgnnisanovelgraphneuralnetworkframeworkforsinglecellrnaseqanalyses
AT hongjunfu scgnnisanovelgraphneuralnetworkframeworkforsinglecellrnaseqanalyses
AT qinma scgnnisanovelgraphneuralnetworkframeworkforsinglecellrnaseqanalyses
AT dongxu scgnnisanovelgraphneuralnetworkframeworkforsinglecellrnaseqanalyses
_version_ 1718395301455200256