scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses
Single-cell RNA-Seq suffers from heterogeneity in sequencing sparsity and complex differential patterns in gene expression. Here, the authors introduce a graph neural network based on a hypothesis-free deep learning framework as an effective representation of gene expression and cell–cell relationsh...
Guardado en:
Autores principales: | Juexin Wang, Anjun Ma, Yuzhou Chang, Jianting Gong, Yuexu Jiang, Ren Qi, Cankun Wang, Hongjun Fu, Qin Ma, Dong Xu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a461a5e31f27497ea7c1e605964bab0a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Boosting-GNN: Boosting Algorithm for Graph Networks on Imbalanced Node Classification
por: Shuhao Shi, et al.
Publicado: (2021) -
Study on 3D Image Reconstruction Model of Sparring Action Based on Graph Neural Network (GNN)
por: Yahui Chang, et al.
Publicado: (2021) -
Gene biomarker prediction in glioma by integrating scRNA-seq data and gene regulatory network
por: Guimin Qin, et al.
Publicado: (2021) -
Graph hierarchy: a novel framework to analyse hierarchical structures in complex networks
por: Giannis Moutsinas, et al.
Publicado: (2021) -
Integrative differential expression and gene set enrichment analysis using summary statistics for scRNA-seq studies
por: Ying Ma, et al.
Publicado: (2020)