Construction of ground-state preserving sparse lattice models for predictive materials simulations
Materials simulations: Constructing models guaranteed to preserve the ground states A method has been developed for performing materials simulations without needing to perform manual parameter tuning for the ground-state. First-principles density functional theory calculations are one of the most co...
Guardado en:
Autores principales: | Wenxuan Huang, Alexander Urban, Ziqin Rong, Zhiwei Ding, Chuan Luo, Gerbrand Ceder |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a470cdea6be541e4a75f87e3869a1d46 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models
por: Elisabeth J. Schiessler, et al.
Publicado: (2021) -
Effective mass and Fermi surface complexity factor from ab initio band structure calculations
por: Zachary M. Gibbs, et al.
Publicado: (2017) -
Microscopic mechanism of unusual lattice thermal transport in TlInTe2
por: Koushik Pal, et al.
Publicado: (2021) -
Four-dimensional imaging of lattice dynamics using ab-initio simulation
por: Navdeep Rana, et al.
Publicado: (2021) -
Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics
por: Svetoslav Nikolov, et al.
Publicado: (2021)