Construction of ground-state preserving sparse lattice models for predictive materials simulations
Materials simulations: Constructing models guaranteed to preserve the ground states A method has been developed for performing materials simulations without needing to perform manual parameter tuning for the ground-state. First-principles density functional theory calculations are one of the most co...
Enregistré dans:
Auteurs principaux: | Wenxuan Huang, Alexander Urban, Ziqin Rong, Zhiwei Ding, Chuan Luo, Gerbrand Ceder |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a470cdea6be541e4a75f87e3869a1d46 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models
par: Elisabeth J. Schiessler, et autres
Publié: (2021) -
Effective mass and Fermi surface complexity factor from ab initio band structure calculations
par: Zachary M. Gibbs, et autres
Publié: (2017) -
Microscopic mechanism of unusual lattice thermal transport in TlInTe2
par: Koushik Pal, et autres
Publié: (2021) -
Four-dimensional imaging of lattice dynamics using ab-initio simulation
par: Navdeep Rana, et autres
Publié: (2021) -
Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics
par: Svetoslav Nikolov, et autres
Publié: (2021)