Study on application of artificial neural network to debris bed coolability calculations for sodium-cooled fast reactors
Understanding the effect of uncertainties of Core Disruptive Accident (CDA) scenarios on debris bed coolability on a core catcher is required for decision making on design options to mitigate a CDA consequence. For the understanding, a huge number of calculations are required but are extremely diffi...
Guardado en:
Autores principales: | Eiji MATSUO, Kyohei SASA, Hiroyuki SAITO, Yutaka ABE |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
The Japan Society of Mechanical Engineers
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a47719620ca94f79ab0356c26014b793 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Study on high-speed calculation of debris bed coolability for sodium-cooled fast reactors
por: Eiji MATSUO, et al.
Publicado: (2020) -
Experimental study and empirical model development for self-leveling behavior of debris bed using gas-injection
por: Songbai CHENG, et al.
Publicado: (2014) -
Numerical investigation on the scale-up rules of a supercritical water fluidized bed reactor using the two-fluid model
por: Hao Zhang, et al.
Publicado: (2021) -
Study on Temperature Feedback Effect of Supercritical CO2–Cooled Reactor
por: Lianjie Wang, et al.
Publicado: (2021) -
A New Inductive Debris Sensor Based on Dual-Excitation Coils and Dual-Sensing Coils for Online Debris Monitoring
por: Xianwei Wu, et al.
Publicado: (2021)