The Impact of a Severe Drought on Dust Lifting in California’s Owens Lake Area

Abstract Mineral dust aerosols are responsible for some of the largest sources of uncertainties in our current understanding of climate change. Here we show that a severe drought is having a significant impact in one of largest sources of mineral dust aerosols of the U.S., the Owens Lake area in Cal...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cauê S. Borlina, Nilton O. Rennó
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/a4848de45d0644b5b1b9dbf54a157ed7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Mineral dust aerosols are responsible for some of the largest sources of uncertainties in our current understanding of climate change. Here we show that a severe drought is having a significant impact in one of largest sources of mineral dust aerosols of the U.S., the Owens Lake area in California’s southwest. Measurements of aerosol concentration (PM2.5 particle matter) in the Owens Lake salty playa show that the annual mean concentration of PM2.5 aerosol has been increasing steadily since the beginning of the current drought, with periods of high aerosol concentration increasing from 4 months in 2013 to 9 months in 2015. Interestingly, the PM2.5 aerosol concentration usually increases abruptly from less than ~0.05 mg/m3 to ~0.25 mg/m3. This occurs when saltation events break salt crusts produced by the efflorescence of brine in the salty playa. The brine is produced by either rainfall or runoff water. Based on this observation, we hypothesize that there is an upper limit of ~0.25 mg/m3 in the annual mean PM2.5 aerosols concentration in the Owens Lake basin that might limit the impact of mineral dust aerosols on climate. Indeed, the upper annual limit of ~0.25 mg/m3 has been nearly reached during the current drought.