Applications of machine learning to undifferentiated chest pain in the emergency department: A systematic review.
<h4>Background</h4>Chest pain is amongst the most common reason for presentation to the emergency department (ED). There are many causes of chest pain, and it is important for the emergency physician to quickly and accurately diagnose life threatening causes such as acute myocardial infa...
Guardado en:
Autores principales: | Jonathon Stewart, Juan Lu, Adrian Goudie, Mohammed Bennamoun, Peter Sprivulis, Frank Sanfillipo, Girish Dwivedi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a4878fd245c34849815dc02bb90227d9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
30 day predicted outcome in undifferentiated chest pain: multicenter validation of the HEART score in Tunisian population
por: Mohamed Hassene Khalil, et al.
Publicado: (2021) -
Graded Coronary Risk Stratification for Emergency Department Patients With Chest Pain: A Controlled Cohort Study
por: Dustin G. Mark, et al.
Publicado: (2021) -
A retrospective HEART risk score comparation of acute non-traumatic chest pain patients in an emergency department in Spain
por: Iris Nathalie San Román Arispe, et al.
Publicado: (2021) -
Machine learning techniques for mortality prediction in emergency departments: a systematic review
por: Mohammad Naghavi-Behzad, et al.
Publicado: (2021) -
Pain management practices in the emergency departments in Turkey
por: Murat Cetin, et al.
Publicado: (2021)