Deep learning identifies partially overlapping subnetworks in the human social brain
Kiesow et al. use deep learning to identify partially overlapping subnetworks in the human social brain at the population level. They also demonstrate that the learned subnetwork representations can be used to predict social traits.
Guardado en:
Autores principales: | Hannah Kiesow, R. Nathan Spreng, Avram J. Holmes, M. Mallar Chakravarty, Andre F. Marquand, B. T. Thomas Yeo, Danilo Bzdok |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a4a9ee00209e42d1ad60de05bb5730c4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dissecting the midlife crisis: disentangling social, personality and demographic determinants in social brain anatomy
por: Hannah Kiesow, et al.
Publicado: (2021) -
Topography and behavioral relevance of the global signal in the human brain
por: Jingwei Li, et al.
Publicado: (2019) -
The rich get richer: brain injury elicits hyperconnectivity in core subnetworks.
por: Frank G Hillary, et al.
Publicado: (2014) -
The default network of the human brain is associated with perceived social isolation
por: R. Nathan Spreng, et al.
Publicado: (2020) -
Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets
por: Marc-Andre Schulz, et al.
Publicado: (2020)