Statistical modeling of RNA structure profiling experiments enables parsimonious reconstruction of structure landscapes
Different experimental and computational approaches can be used to study RNA structures. Here, the authors present a computational method for data-directed reconstruction of complex RNA structure landscapes, which predicts a parsimonious set of co-existing structures and estimates their abundances f...
Guardado en:
Autores principales: | Hua Li, Sharon Aviran |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a4ce7826408646cbb8880ad8331024ff |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Publisher Correction: Statistical modeling of RNA structure profiling experiments enables parsimonious reconstruction of structure landscapes
por: Hua Li, et al.
Publicado: (2018) -
Rec-DCM-Eigen: reconstructing a less parsimonious but more accurate tree in shorter time.
por: Seunghwa Kang, et al.
Publicado: (2011) -
Validation of parsimonious prognostic models for patients infected with COVID-19
por: Nicole M Adler, et al.
Publicado: (2021) -
A parsimonious model to validate cost-effectiveness analyses on preventive health care
por: Afschin Gandjour
Publicado: (2021) -
Parsimonious neural networks learn interpretable physical laws
por: Saaketh Desai, et al.
Publicado: (2021)