Inhibition of ERK1/2 Restores GSK3β Activity and Protein Synthesis Levels in a Model of Tuberous Sclerosis
Abstract Tuberous sclerosis (TS) is a multi-organ autosomal dominant disorder that is best characterized by neurodevelopmental deficits and the presence of benign tumors. TS pathology is caused by mutations in tuberous sclerosis complex (TSC) genes and is associated with insulin resistance, decrease...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a4d9a93f97c34c3c8f582aba8a8ebcdd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a4d9a93f97c34c3c8f582aba8a8ebcdd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a4d9a93f97c34c3c8f582aba8a8ebcdd2021-12-02T16:06:23ZInhibition of ERK1/2 Restores GSK3β Activity and Protein Synthesis Levels in a Model of Tuberous Sclerosis10.1038/s41598-017-04528-52045-2322https://doaj.org/article/a4d9a93f97c34c3c8f582aba8a8ebcdd2017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-04528-5https://doaj.org/toc/2045-2322Abstract Tuberous sclerosis (TS) is a multi-organ autosomal dominant disorder that is best characterized by neurodevelopmental deficits and the presence of benign tumors. TS pathology is caused by mutations in tuberous sclerosis complex (TSC) genes and is associated with insulin resistance, decreased glycogen synthase kinase 3β (GSK3β) activity, activation of the mammalian target of rapamycin complex 1 (mTORC1), and subsequent increase in protein synthesis. Here, we show that extracellular signal–regulated kinases (ERK1/2) respond to insulin stimulation and integrate insulin signaling to phosphorylate and thus inactivate GSK3β, resulting in increased protein synthesis that is independent of Akt/mTORC1 activity. Inhibition of ERK1/2 in Tsc2 −/− cells—a model of TS—rescues GSK3β activity and protein synthesis levels, thus highlighting ERK1/2 as a potential therapeutic target for the treatment of TS.Rituraj PalVitaliy V. BondarCarolyn J. AdamskiGeorge G. RodneyMarco SardielloNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Rituraj Pal Vitaliy V. Bondar Carolyn J. Adamski George G. Rodney Marco Sardiello Inhibition of ERK1/2 Restores GSK3β Activity and Protein Synthesis Levels in a Model of Tuberous Sclerosis |
description |
Abstract Tuberous sclerosis (TS) is a multi-organ autosomal dominant disorder that is best characterized by neurodevelopmental deficits and the presence of benign tumors. TS pathology is caused by mutations in tuberous sclerosis complex (TSC) genes and is associated with insulin resistance, decreased glycogen synthase kinase 3β (GSK3β) activity, activation of the mammalian target of rapamycin complex 1 (mTORC1), and subsequent increase in protein synthesis. Here, we show that extracellular signal–regulated kinases (ERK1/2) respond to insulin stimulation and integrate insulin signaling to phosphorylate and thus inactivate GSK3β, resulting in increased protein synthesis that is independent of Akt/mTORC1 activity. Inhibition of ERK1/2 in Tsc2 −/− cells—a model of TS—rescues GSK3β activity and protein synthesis levels, thus highlighting ERK1/2 as a potential therapeutic target for the treatment of TS. |
format |
article |
author |
Rituraj Pal Vitaliy V. Bondar Carolyn J. Adamski George G. Rodney Marco Sardiello |
author_facet |
Rituraj Pal Vitaliy V. Bondar Carolyn J. Adamski George G. Rodney Marco Sardiello |
author_sort |
Rituraj Pal |
title |
Inhibition of ERK1/2 Restores GSK3β Activity and Protein Synthesis Levels in a Model of Tuberous Sclerosis |
title_short |
Inhibition of ERK1/2 Restores GSK3β Activity and Protein Synthesis Levels in a Model of Tuberous Sclerosis |
title_full |
Inhibition of ERK1/2 Restores GSK3β Activity and Protein Synthesis Levels in a Model of Tuberous Sclerosis |
title_fullStr |
Inhibition of ERK1/2 Restores GSK3β Activity and Protein Synthesis Levels in a Model of Tuberous Sclerosis |
title_full_unstemmed |
Inhibition of ERK1/2 Restores GSK3β Activity and Protein Synthesis Levels in a Model of Tuberous Sclerosis |
title_sort |
inhibition of erk1/2 restores gsk3β activity and protein synthesis levels in a model of tuberous sclerosis |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/a4d9a93f97c34c3c8f582aba8a8ebcdd |
work_keys_str_mv |
AT riturajpal inhibitionoferk12restoresgsk3bactivityandproteinsynthesislevelsinamodeloftuberoussclerosis AT vitaliyvbondar inhibitionoferk12restoresgsk3bactivityandproteinsynthesislevelsinamodeloftuberoussclerosis AT carolynjadamski inhibitionoferk12restoresgsk3bactivityandproteinsynthesislevelsinamodeloftuberoussclerosis AT georgegrodney inhibitionoferk12restoresgsk3bactivityandproteinsynthesislevelsinamodeloftuberoussclerosis AT marcosardiello inhibitionoferk12restoresgsk3bactivityandproteinsynthesislevelsinamodeloftuberoussclerosis |
_version_ |
1718385043721682944 |