Variational preparation of finite-temperature states on a quantum computer

Abstract The preparation of thermal equilibrium states is important for the simulation of condensed matter and cosmology systems using a quantum computer. We present a method to prepare such mixed states with unitary operators and demonstrate this technique experimentally using a gate-based quantum...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: R. Sagastizabal, S. P. Premaratne, B. A. Klaver, M. A. Rol, V. Negîrneac, M. S. Moreira, X. Zou, S. Johri, N. Muthusubramanian, M. Beekman, C. Zachariadis, V. P. Ostroukh, N. Haider, A. Bruno, A. Y. Matsuura, L. DiCarlo
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/a4e1a9bbc9694af492d5bbcf1513f7a0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a4e1a9bbc9694af492d5bbcf1513f7a0
record_format dspace
spelling oai:doaj.org-article:a4e1a9bbc9694af492d5bbcf1513f7a02021-12-02T18:51:46ZVariational preparation of finite-temperature states on a quantum computer10.1038/s41534-021-00468-12056-6387https://doaj.org/article/a4e1a9bbc9694af492d5bbcf1513f7a02021-08-01T00:00:00Zhttps://doi.org/10.1038/s41534-021-00468-1https://doaj.org/toc/2056-6387Abstract The preparation of thermal equilibrium states is important for the simulation of condensed matter and cosmology systems using a quantum computer. We present a method to prepare such mixed states with unitary operators and demonstrate this technique experimentally using a gate-based quantum processor. Our method targets the generation of thermofield double states using a hybrid quantum-classical variational approach motivated by quantum-approximate optimization algorithms, without prior calculation of optimal variational parameters by numerical simulation. The fidelity of generated states to the thermal-equilibrium state smoothly varies from 99 to 75% between infinite and near-zero simulated temperature, in quantitative agreement with numerical simulations of the noisy quantum processor with error parameters drawn from experiment.R. SagastizabalS. P. PremaratneB. A. KlaverM. A. RolV. NegîrneacM. S. MoreiraX. ZouS. JohriN. MuthusubramanianM. BeekmanC. ZachariadisV. P. OstroukhN. HaiderA. BrunoA. Y. MatsuuraL. DiCarloNature PortfolioarticlePhysicsQC1-999Electronic computers. Computer scienceQA75.5-76.95ENnpj Quantum Information, Vol 7, Iss 1, Pp 1-7 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
Electronic computers. Computer science
QA75.5-76.95
spellingShingle Physics
QC1-999
Electronic computers. Computer science
QA75.5-76.95
R. Sagastizabal
S. P. Premaratne
B. A. Klaver
M. A. Rol
V. Negîrneac
M. S. Moreira
X. Zou
S. Johri
N. Muthusubramanian
M. Beekman
C. Zachariadis
V. P. Ostroukh
N. Haider
A. Bruno
A. Y. Matsuura
L. DiCarlo
Variational preparation of finite-temperature states on a quantum computer
description Abstract The preparation of thermal equilibrium states is important for the simulation of condensed matter and cosmology systems using a quantum computer. We present a method to prepare such mixed states with unitary operators and demonstrate this technique experimentally using a gate-based quantum processor. Our method targets the generation of thermofield double states using a hybrid quantum-classical variational approach motivated by quantum-approximate optimization algorithms, without prior calculation of optimal variational parameters by numerical simulation. The fidelity of generated states to the thermal-equilibrium state smoothly varies from 99 to 75% between infinite and near-zero simulated temperature, in quantitative agreement with numerical simulations of the noisy quantum processor with error parameters drawn from experiment.
format article
author R. Sagastizabal
S. P. Premaratne
B. A. Klaver
M. A. Rol
V. Negîrneac
M. S. Moreira
X. Zou
S. Johri
N. Muthusubramanian
M. Beekman
C. Zachariadis
V. P. Ostroukh
N. Haider
A. Bruno
A. Y. Matsuura
L. DiCarlo
author_facet R. Sagastizabal
S. P. Premaratne
B. A. Klaver
M. A. Rol
V. Negîrneac
M. S. Moreira
X. Zou
S. Johri
N. Muthusubramanian
M. Beekman
C. Zachariadis
V. P. Ostroukh
N. Haider
A. Bruno
A. Y. Matsuura
L. DiCarlo
author_sort R. Sagastizabal
title Variational preparation of finite-temperature states on a quantum computer
title_short Variational preparation of finite-temperature states on a quantum computer
title_full Variational preparation of finite-temperature states on a quantum computer
title_fullStr Variational preparation of finite-temperature states on a quantum computer
title_full_unstemmed Variational preparation of finite-temperature states on a quantum computer
title_sort variational preparation of finite-temperature states on a quantum computer
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/a4e1a9bbc9694af492d5bbcf1513f7a0
work_keys_str_mv AT rsagastizabal variationalpreparationoffinitetemperaturestatesonaquantumcomputer
AT sppremaratne variationalpreparationoffinitetemperaturestatesonaquantumcomputer
AT baklaver variationalpreparationoffinitetemperaturestatesonaquantumcomputer
AT marol variationalpreparationoffinitetemperaturestatesonaquantumcomputer
AT vnegirneac variationalpreparationoffinitetemperaturestatesonaquantumcomputer
AT msmoreira variationalpreparationoffinitetemperaturestatesonaquantumcomputer
AT xzou variationalpreparationoffinitetemperaturestatesonaquantumcomputer
AT sjohri variationalpreparationoffinitetemperaturestatesonaquantumcomputer
AT nmuthusubramanian variationalpreparationoffinitetemperaturestatesonaquantumcomputer
AT mbeekman variationalpreparationoffinitetemperaturestatesonaquantumcomputer
AT czachariadis variationalpreparationoffinitetemperaturestatesonaquantumcomputer
AT vpostroukh variationalpreparationoffinitetemperaturestatesonaquantumcomputer
AT nhaider variationalpreparationoffinitetemperaturestatesonaquantumcomputer
AT abruno variationalpreparationoffinitetemperaturestatesonaquantumcomputer
AT aymatsuura variationalpreparationoffinitetemperaturestatesonaquantumcomputer
AT ldicarlo variationalpreparationoffinitetemperaturestatesonaquantumcomputer
_version_ 1718377402053165056