Variational preparation of finite-temperature states on a quantum computer
Abstract The preparation of thermal equilibrium states is important for the simulation of condensed matter and cosmology systems using a quantum computer. We present a method to prepare such mixed states with unitary operators and demonstrate this technique experimentally using a gate-based quantum...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a4e1a9bbc9694af492d5bbcf1513f7a0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a4e1a9bbc9694af492d5bbcf1513f7a0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a4e1a9bbc9694af492d5bbcf1513f7a02021-12-02T18:51:46ZVariational preparation of finite-temperature states on a quantum computer10.1038/s41534-021-00468-12056-6387https://doaj.org/article/a4e1a9bbc9694af492d5bbcf1513f7a02021-08-01T00:00:00Zhttps://doi.org/10.1038/s41534-021-00468-1https://doaj.org/toc/2056-6387Abstract The preparation of thermal equilibrium states is important for the simulation of condensed matter and cosmology systems using a quantum computer. We present a method to prepare such mixed states with unitary operators and demonstrate this technique experimentally using a gate-based quantum processor. Our method targets the generation of thermofield double states using a hybrid quantum-classical variational approach motivated by quantum-approximate optimization algorithms, without prior calculation of optimal variational parameters by numerical simulation. The fidelity of generated states to the thermal-equilibrium state smoothly varies from 99 to 75% between infinite and near-zero simulated temperature, in quantitative agreement with numerical simulations of the noisy quantum processor with error parameters drawn from experiment.R. SagastizabalS. P. PremaratneB. A. KlaverM. A. RolV. NegîrneacM. S. MoreiraX. ZouS. JohriN. MuthusubramanianM. BeekmanC. ZachariadisV. P. OstroukhN. HaiderA. BrunoA. Y. MatsuuraL. DiCarloNature PortfolioarticlePhysicsQC1-999Electronic computers. Computer scienceQA75.5-76.95ENnpj Quantum Information, Vol 7, Iss 1, Pp 1-7 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 Electronic computers. Computer science QA75.5-76.95 |
spellingShingle |
Physics QC1-999 Electronic computers. Computer science QA75.5-76.95 R. Sagastizabal S. P. Premaratne B. A. Klaver M. A. Rol V. Negîrneac M. S. Moreira X. Zou S. Johri N. Muthusubramanian M. Beekman C. Zachariadis V. P. Ostroukh N. Haider A. Bruno A. Y. Matsuura L. DiCarlo Variational preparation of finite-temperature states on a quantum computer |
description |
Abstract The preparation of thermal equilibrium states is important for the simulation of condensed matter and cosmology systems using a quantum computer. We present a method to prepare such mixed states with unitary operators and demonstrate this technique experimentally using a gate-based quantum processor. Our method targets the generation of thermofield double states using a hybrid quantum-classical variational approach motivated by quantum-approximate optimization algorithms, without prior calculation of optimal variational parameters by numerical simulation. The fidelity of generated states to the thermal-equilibrium state smoothly varies from 99 to 75% between infinite and near-zero simulated temperature, in quantitative agreement with numerical simulations of the noisy quantum processor with error parameters drawn from experiment. |
format |
article |
author |
R. Sagastizabal S. P. Premaratne B. A. Klaver M. A. Rol V. Negîrneac M. S. Moreira X. Zou S. Johri N. Muthusubramanian M. Beekman C. Zachariadis V. P. Ostroukh N. Haider A. Bruno A. Y. Matsuura L. DiCarlo |
author_facet |
R. Sagastizabal S. P. Premaratne B. A. Klaver M. A. Rol V. Negîrneac M. S. Moreira X. Zou S. Johri N. Muthusubramanian M. Beekman C. Zachariadis V. P. Ostroukh N. Haider A. Bruno A. Y. Matsuura L. DiCarlo |
author_sort |
R. Sagastizabal |
title |
Variational preparation of finite-temperature states on a quantum computer |
title_short |
Variational preparation of finite-temperature states on a quantum computer |
title_full |
Variational preparation of finite-temperature states on a quantum computer |
title_fullStr |
Variational preparation of finite-temperature states on a quantum computer |
title_full_unstemmed |
Variational preparation of finite-temperature states on a quantum computer |
title_sort |
variational preparation of finite-temperature states on a quantum computer |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/a4e1a9bbc9694af492d5bbcf1513f7a0 |
work_keys_str_mv |
AT rsagastizabal variationalpreparationoffinitetemperaturestatesonaquantumcomputer AT sppremaratne variationalpreparationoffinitetemperaturestatesonaquantumcomputer AT baklaver variationalpreparationoffinitetemperaturestatesonaquantumcomputer AT marol variationalpreparationoffinitetemperaturestatesonaquantumcomputer AT vnegirneac variationalpreparationoffinitetemperaturestatesonaquantumcomputer AT msmoreira variationalpreparationoffinitetemperaturestatesonaquantumcomputer AT xzou variationalpreparationoffinitetemperaturestatesonaquantumcomputer AT sjohri variationalpreparationoffinitetemperaturestatesonaquantumcomputer AT nmuthusubramanian variationalpreparationoffinitetemperaturestatesonaquantumcomputer AT mbeekman variationalpreparationoffinitetemperaturestatesonaquantumcomputer AT czachariadis variationalpreparationoffinitetemperaturestatesonaquantumcomputer AT vpostroukh variationalpreparationoffinitetemperaturestatesonaquantumcomputer AT nhaider variationalpreparationoffinitetemperaturestatesonaquantumcomputer AT abruno variationalpreparationoffinitetemperaturestatesonaquantumcomputer AT aymatsuura variationalpreparationoffinitetemperaturestatesonaquantumcomputer AT ldicarlo variationalpreparationoffinitetemperaturestatesonaquantumcomputer |
_version_ |
1718377402053165056 |