Buzz Tweet Classification Based on Text and Image Features of Tweets Using Multi-Task Learning
This study investigates social media trends and proposes a buzz tweet classification method to explore the factors causing the buzz phenomenon on Twitter. It is difficult to identify the causes of the buzz phenomenon based solely on texts posted on Twitter. It is expected that by limiting the tweets...
Guardado en:
Autores principales: | Reishi Amitani, Kazuyuki Matsumoto, Minoru Yoshida, Kenji Kita |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a4e48647ded1406aadcc5f41e1531b2f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Solving Stance Detection on Tweets as Multi-Domain and Multi-Task Text Classification
por: Limin Wang, et al.
Publicado: (2021) -
An Explainable Artificial Intelligence Model for Detecting Xenophobic Tweets
por: Gabriel Ichcanziho Pérez-Landa, et al.
Publicado: (2021) -
Detecting Aggressiveness in Tweets: A Hybrid Model for Detecting Cyberbullying in the Spanish Language
por: Manuel Lepe-Faúndez, et al.
Publicado: (2021) -
DCBRTS: A Classification-Summarization Approach for Evolving Tweet Streams in Multiobjective Optimization Framework
por: Diksha Bansal, et al.
Publicado: (2021) -
Fine-Grained Sentiment Analysis of Arabic COVID-19 Tweets Using BERT-Based Transformers and Dynamically Weighted Loss Function
por: Nora Alturayeif, et al.
Publicado: (2021)