Buzz Tweet Classification Based on Text and Image Features of Tweets Using Multi-Task Learning
This study investigates social media trends and proposes a buzz tweet classification method to explore the factors causing the buzz phenomenon on Twitter. It is difficult to identify the causes of the buzz phenomenon based solely on texts posted on Twitter. It is expected that by limiting the tweets...
Enregistré dans:
Auteurs principaux: | Reishi Amitani, Kazuyuki Matsumoto, Minoru Yoshida, Kenji Kita |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a4e48647ded1406aadcc5f41e1531b2f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Solving Stance Detection on Tweets as Multi-Domain and Multi-Task Text Classification
par: Limin Wang, et autres
Publié: (2021) -
An Explainable Artificial Intelligence Model for Detecting Xenophobic Tweets
par: Gabriel Ichcanziho Pérez-Landa, et autres
Publié: (2021) -
Detecting Aggressiveness in Tweets: A Hybrid Model for Detecting Cyberbullying in the Spanish Language
par: Manuel Lepe-Faúndez, et autres
Publié: (2021) -
DCBRTS: A Classification-Summarization Approach for Evolving Tweet Streams in Multiobjective Optimization Framework
par: Diksha Bansal, et autres
Publié: (2021) -
Fine-Grained Sentiment Analysis of Arabic COVID-19 Tweets Using BERT-Based Transformers and Dynamically Weighted Loss Function
par: Nora Alturayeif, et autres
Publié: (2021)