The environmental and ecological determinants of elevated Ross River Virus exposure in koalas residing in urban coastal landscapes
Abstract Koala populations in many areas of Australia have declined sharply in response to habitat loss, disease and the effects of climate change. Koalas may face further morbidity from endemic mosquito-borne viruses, but the impact of such viruses is currently unknown. Few seroprevalence studies i...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a4f04381c7fb48848bf41036916ac99e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Koala populations in many areas of Australia have declined sharply in response to habitat loss, disease and the effects of climate change. Koalas may face further morbidity from endemic mosquito-borne viruses, but the impact of such viruses is currently unknown. Few seroprevalence studies in the wild exist and little is known of the determinants of exposure. Here, we exploited a large, spatially and temporally explicit koala survey to define the intensity of Ross River Virus (RRV) exposure in koalas residing in urban coastal environments in southeast Queensland, Australia. We demonstrate that RRV exposure in koalas is much higher (> 80%) than reported in other sero-surveys and that exposure is uniform across the urban coastal landscape. Uniformity in exposure is related to the presence of the major RRV mosquito vector, Culex annulirostris, and similarities in animal movement, tree use, and age-dependent increases in exposure risk. Elevated exposure ultimately appears to result from the confinement of remaining coastal koala habitat to the edges of permanent wetlands unsuitable for urban development and which produce large numbers of competent mosquito vectors. The results further illustrate that koalas and other RRV-susceptible vertebrates may serve as useful sentinels of human urban exposure in endemic areas. |
---|