Remote sensing image description based on word embedding and end-to-end deep learning
Abstract This study proposes an end-to-end image description generation model based on word embedding technology to realise the classification and identification of Populus euphratica and Tamarix in complex remote sensing images by providing descriptions in precise and concise natural sentences. Fir...
Enregistré dans:
Auteurs principaux: | Yuan Wang, Hongbing Ma, Kuerban Alifu, Yalong Lv |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a4f7d8083d4d486fa8fce75c5f6fc3bf |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
End-to-End SAR Deep Learning Imaging Method Based on Sparse Optimization
par: Siyuan Zhao, et autres
Publié: (2021) -
Natural language word embeddings as a glimpse into healthcare language and associated mortality surrounding end of life
par: Wei Gao, et autres
Publié: (2021) -
Dual Head and Dual Attention in Deep Learning for End-to-End EEG Motor Imagery Classification
par: Meiyan Xu, et autres
Publié: (2021) -
End-to-End Deep Learning by MCU Implementation: Indoor Localization by Sound Spectrum of Light Fingerprints
par: Chung-Wen Hung, et autres
Publié: (2021) -
Deep learning for end-to-end kidney cancer diagnosis on multi-phase abdominal computed tomography
par: Kwang-Hyun Uhm, et autres
Publié: (2021)