Complexity control by gradient descent in deep networks

Understanding the underlying mechanisms behind the successes of deep networks remains a challenge. Here, the author demonstrates an implicit regularization in training deep networks, showing that the control of complexity in the training is hidden within the optimization technique of gradient descen...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tomaso Poggio, Qianli Liao, Andrzej Banburski
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/a50e459c37be4efd87800b05dd1d5ce3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a50e459c37be4efd87800b05dd1d5ce3
record_format dspace
spelling oai:doaj.org-article:a50e459c37be4efd87800b05dd1d5ce32021-12-02T14:28:23ZComplexity control by gradient descent in deep networks10.1038/s41467-020-14663-92041-1723https://doaj.org/article/a50e459c37be4efd87800b05dd1d5ce32020-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-14663-9https://doaj.org/toc/2041-1723Understanding the underlying mechanisms behind the successes of deep networks remains a challenge. Here, the author demonstrates an implicit regularization in training deep networks, showing that the control of complexity in the training is hidden within the optimization technique of gradient descent.Tomaso PoggioQianli LiaoAndrzej BanburskiNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-5 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Tomaso Poggio
Qianli Liao
Andrzej Banburski
Complexity control by gradient descent in deep networks
description Understanding the underlying mechanisms behind the successes of deep networks remains a challenge. Here, the author demonstrates an implicit regularization in training deep networks, showing that the control of complexity in the training is hidden within the optimization technique of gradient descent.
format article
author Tomaso Poggio
Qianli Liao
Andrzej Banburski
author_facet Tomaso Poggio
Qianli Liao
Andrzej Banburski
author_sort Tomaso Poggio
title Complexity control by gradient descent in deep networks
title_short Complexity control by gradient descent in deep networks
title_full Complexity control by gradient descent in deep networks
title_fullStr Complexity control by gradient descent in deep networks
title_full_unstemmed Complexity control by gradient descent in deep networks
title_sort complexity control by gradient descent in deep networks
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/a50e459c37be4efd87800b05dd1d5ce3
work_keys_str_mv AT tomasopoggio complexitycontrolbygradientdescentindeepnetworks
AT qianliliao complexitycontrolbygradientdescentindeepnetworks
AT andrzejbanburski complexitycontrolbygradientdescentindeepnetworks
_version_ 1718391271195672576