A hexokinase isoenzyme switch in human liver cancer cells promotes lipogenesis and enhances innate immunity
Many cancers fuel their rapid growth by replacing glucokinase with its higher affinity isoenzyme, hexokinase 2 (HK2), making HK2 an attractive drug target. In this study, Perrin-Cocon and Vidalain et al. use CRISPR/Cas-9 gene editing to reverse this enzymatic switch in human liver cancer cells, and...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a519b0af2fba49868394944910f843d0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Many cancers fuel their rapid growth by replacing glucokinase with its higher affinity isoenzyme, hexokinase 2 (HK2), making HK2 an attractive drug target. In this study, Perrin-Cocon and Vidalain et al. use CRISPR/Cas-9 gene editing to reverse this enzymatic switch in human liver cancer cells, and find this restores innate immune function as well as reversing cancer-associated metabolic reprogramming. |
---|