Conditional Deep 3D-Convolutional Generative Adversarial Nets for RGB-D Generation
Generation of synthetic data is a challenging task. There are only a few significant works on RGB video generation and no pertinent works on RGB-D data generation. In the present work, we focus our attention on synthesizing RGB-D data which can further be used as dataset for various applications lik...
Guardado en:
Autores principales: | Richa Sharma, Manoj Sharma, Ankit Shukla, Santanu Chaudhury |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a51be49e99d04078975762712f79cee2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
FRGAN: A Blind Face Restoration with Generative Adversarial Networks
por: Tongxin Wei, et al.
Publicado: (2021) -
Constrained crystals deep convolutional generative adversarial network for the inverse design of crystal structures
por: Teng Long, et al.
Publicado: (2021) -
Connectivity-informed drainage network generation using deep convolution generative adversarial networks
por: Sung Eun Kim, et al.
Publicado: (2021) -
Road crack segmentation using an attention residual U-Net with generative adversarial
por: Xing Hu, et al.
Publicado: (2021) -
An OCaNet Model Based on Octave Convolution and Attention Mechanism for Iris Recognition
por: Dong Zou, et al.
Publicado: (2021)