Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning
The authors here tackle the problem that too much seismic data is acquired worldwide to be evaluated in a timely fashion. Seydoux and colleagues develop a machine learning framework that can detect and cluster seismic signals in continuous seismic records.
Guardado en:
Autores principales: | Léonard Seydoux, Randall Balestriero, Piero Poli, Maarten de Hoop, Michel Campillo, Richard Baraniuk |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a51cdd1b270c4f8196f7d797e88c4698 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Shallow slow earthquakes to decipher future catastrophic earthquakes in the Guerrero seismic gap
por: R. Plata-Martinez, et al.
Publicado: (2021) -
With Terra Seismic earthquake prediction, we can be better prepared for earthquakes in Italy
por: Oleg Elshin
Publicado: (2020) -
Unsupervised clustering and epigenetic classification of single cells
por: Mahdi Zamanighomi, et al.
Publicado: (2018) -
Darwin seismic gap closed by the 2010 Maule earthquake
por: Melnick,Daniel, et al.
Publicado: (2012) -
Unsupervised Cluster Guided Object Detection in Aerial Images
por: Jiajia Liao, et al.
Publicado: (2021)