Semi-automated Root Image Analysis (saRIA)
Abstract Quantitative characterization of root system architecture and its development is important for the assessment of a complete plant phenotype. To enable high-throughput phenotyping of plant roots efficient solutions for automated image analysis are required. Since plants naturally grow in an...
Guardado en:
Autores principales: | Narendra Narisetti, Michael Henke, Christiane Seiler, Rongli Shi, Astrid Junker, Thomas Altmann, Evgeny Gladilin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a51fcfac80354d729ece98048c640e80 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fully-automated root image analysis (faRIA)
por: Narendra Narisetti, et al.
Publicado: (2021) -
Semi-Automated Ground Truth Segmentation and Phenotyping of Plant Structures Using k-Means Clustering of Eigen-Colors (kmSeg)
por: Michael Henke, et al.
Publicado: (2021) -
Towards Automated Analysis of Grain Spikes in Greenhouse Images Using Neural Network Approaches: A Comparative Investigation of Six Methods
por: Sajid Ullah, et al.
Publicado: (2021) -
Hist{dotb}ria del dret catala /
Publicado: (2015) -
Revista RIA: el desafío de comunicar
por: Mario Migliorati
Publicado: (2016)