Quantum entangled fractional topology and curvatures
The Chern number is a defining characteristic of a non-trivial topological system and is derived from another fundamental property termed the Berry curvature. Here, the authors theoretically propose the concept of fractional topology with a fractional Chern number using interacting spins on a Poinca...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a523b758c3b64d618ab3cb64bd9144d3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a523b758c3b64d618ab3cb64bd9144d3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a523b758c3b64d618ab3cb64bd9144d32021-12-02T17:12:20ZQuantum entangled fractional topology and curvatures10.1038/s42005-021-00641-02399-3650https://doaj.org/article/a523b758c3b64d618ab3cb64bd9144d32021-06-01T00:00:00Zhttps://doi.org/10.1038/s42005-021-00641-0https://doaj.org/toc/2399-3650The Chern number is a defining characteristic of a non-trivial topological system and is derived from another fundamental property termed the Berry curvature. Here, the authors theoretically propose the concept of fractional topology with a fractional Chern number using interacting spins on a Poincaré (Bloch) sphere under an applied magnetic field.Joel HutchinsonKaryn Le HurNature PortfolioarticleAstrophysicsQB460-466PhysicsQC1-999ENCommunications Physics, Vol 4, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Astrophysics QB460-466 Physics QC1-999 |
spellingShingle |
Astrophysics QB460-466 Physics QC1-999 Joel Hutchinson Karyn Le Hur Quantum entangled fractional topology and curvatures |
description |
The Chern number is a defining characteristic of a non-trivial topological system and is derived from another fundamental property termed the Berry curvature. Here, the authors theoretically propose the concept of fractional topology with a fractional Chern number using interacting spins on a Poincaré (Bloch) sphere under an applied magnetic field. |
format |
article |
author |
Joel Hutchinson Karyn Le Hur |
author_facet |
Joel Hutchinson Karyn Le Hur |
author_sort |
Joel Hutchinson |
title |
Quantum entangled fractional topology and curvatures |
title_short |
Quantum entangled fractional topology and curvatures |
title_full |
Quantum entangled fractional topology and curvatures |
title_fullStr |
Quantum entangled fractional topology and curvatures |
title_full_unstemmed |
Quantum entangled fractional topology and curvatures |
title_sort |
quantum entangled fractional topology and curvatures |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/a523b758c3b64d618ab3cb64bd9144d3 |
work_keys_str_mv |
AT joelhutchinson quantumentangledfractionaltopologyandcurvatures AT karynlehur quantumentangledfractionaltopologyandcurvatures |
_version_ |
1718381452526092288 |