Quantum entangled fractional topology and curvatures

The Chern number is a defining characteristic of a non-trivial topological system and is derived from another fundamental property termed the Berry curvature. Here, the authors theoretically propose the concept of fractional topology with a fractional Chern number using interacting spins on a Poinca...

Full description

Saved in:
Bibliographic Details
Main Authors: Joel Hutchinson, Karyn Le Hur
Format: article
Language:EN
Published: Nature Portfolio 2021
Subjects:
Online Access:https://doaj.org/article/a523b758c3b64d618ab3cb64bd9144d3
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:doaj.org-article:a523b758c3b64d618ab3cb64bd9144d3
record_format dspace
spelling oai:doaj.org-article:a523b758c3b64d618ab3cb64bd9144d32021-12-02T17:12:20ZQuantum entangled fractional topology and curvatures10.1038/s42005-021-00641-02399-3650https://doaj.org/article/a523b758c3b64d618ab3cb64bd9144d32021-06-01T00:00:00Zhttps://doi.org/10.1038/s42005-021-00641-0https://doaj.org/toc/2399-3650The Chern number is a defining characteristic of a non-trivial topological system and is derived from another fundamental property termed the Berry curvature. Here, the authors theoretically propose the concept of fractional topology with a fractional Chern number using interacting spins on a Poincaré (Bloch) sphere under an applied magnetic field.Joel HutchinsonKaryn Le HurNature PortfolioarticleAstrophysicsQB460-466PhysicsQC1-999ENCommunications Physics, Vol 4, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Astrophysics
QB460-466
Physics
QC1-999
spellingShingle Astrophysics
QB460-466
Physics
QC1-999
Joel Hutchinson
Karyn Le Hur
Quantum entangled fractional topology and curvatures
description The Chern number is a defining characteristic of a non-trivial topological system and is derived from another fundamental property termed the Berry curvature. Here, the authors theoretically propose the concept of fractional topology with a fractional Chern number using interacting spins on a Poincaré (Bloch) sphere under an applied magnetic field.
format article
author Joel Hutchinson
Karyn Le Hur
author_facet Joel Hutchinson
Karyn Le Hur
author_sort Joel Hutchinson
title Quantum entangled fractional topology and curvatures
title_short Quantum entangled fractional topology and curvatures
title_full Quantum entangled fractional topology and curvatures
title_fullStr Quantum entangled fractional topology and curvatures
title_full_unstemmed Quantum entangled fractional topology and curvatures
title_sort quantum entangled fractional topology and curvatures
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/a523b758c3b64d618ab3cb64bd9144d3
work_keys_str_mv AT joelhutchinson quantumentangledfractionaltopologyandcurvatures
AT karynlehur quantumentangledfractionaltopologyandcurvatures
_version_ 1718381452526092288