Quantum entangled fractional topology and curvatures
The Chern number is a defining characteristic of a non-trivial topological system and is derived from another fundamental property termed the Berry curvature. Here, the authors theoretically propose the concept of fractional topology with a fractional Chern number using interacting spins on a Poinca...
Guardado en:
Autores principales: | Joel Hutchinson, Karyn Le Hur |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a523b758c3b64d618ab3cb64bd9144d3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Publisher Correction: Quantum entangled fractional topology and curvatures
por: Joel Hutchinson, et al.
Publicado: (2021) -
Hard magnet topological semimetals in XPt3 compounds with the harmony of Berry curvature
por: Anastasios Markou, et al.
Publicado: (2021) -
Massively-multiplexed generation of Bell-type entanglement using a quantum memory
por: Michał Lipka, et al.
Publicado: (2021) -
Entanglement growth in diffusive systems with large spin
por: Tibor Rakovszky, et al.
Publicado: (2021) -
Unraveling the effects of multiscale network entanglement on empirical systems
por: Arsham Ghavasieh, et al.
Publicado: (2021)